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ΠΡΟΛΟΓΟΣ 

 

Η παρούσα διπλωµατική εργασία ασχολείται µε το πρόβληµα της έρευνας 

γράφων. Το πρόβληµα έχει δύο κύριες εκδοχές οι οποίες αναλύονται στην παράγραφο 

1.1. Από αυτές ασχολούµαστε κυρίως µε τη δεύτερη εκδοχή, την έρευνα ακµών. Οι 

βασικοί στόχοι  της εργασίας είναι οι εξής τέσσερις, κατά σειρά προτεραιότητας:  

 

1. Η ανάπτυξη ενός λογισµικού που υλοποιεί τους αλγόριθµους έρευνας 

ακµών που περιγράφονται στο κεφάλαιο 4. Το πρόγραµµα θέλουµε να 

είναι εύχρηστο και γρήγορο και να µπορεί να συνεργαστεί µε το 

πρόγραµµα υλοποίησης του αλγορίθµου GSST (κεφάλαιο 3), το 

gsearch.exe (παράγραφος 5.1.1), χρησιµοποιώντας ίδια δοµή στα αρχεία 

εισόδου και εξόδου του.  

2. Η επέκταση του γραφικού περιβάλλοντος του gsearch.exe έτσι ώστε να 

µπορεί να χρησιµοποιηθεί όχι µόνο για έρευνα κόµβων αλλά και για 

έρευνα ακµών. Επίσης η βελτίωση της  οπτικοποίησης των ερευνών έτσι 

ώστε να γίνεται καλύτερη εποπτεία των καταστάσεων των στοιχείων του 

γράφου (παράγραφος 5.1.4) για τους δυο διαφορετικούς τύπους ερευνών. 

3. Η µαθηµατική µελέτη και απόδειξη των δυο αλγορίθµων έρευνας ακµών 

που επινοήσαµε. 

4. Η συγκριτική αξιολόγηση των αλγορίθµων έρευνας ακµών µέσω 

πειραµάτων σε γράφους, είτε κατασκευασµένους για αυτό το σκοπό, είτε 

µοντέλων πραγµατικών χώρων (κεφάλαιο 6). 

 

Την εργασία αφιερώνω στην οικογένεια και τους φίλους µου. 

 

 

Κ. Τοµπακίδης,  

Οκτώβρης 2010 

Θεσσαλονίκη 
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1.Εισαγωγή 

1.1 Κτίρια και σπηλιές 

 

Σε αυτή την εργασία µελετάµε µια παραλλαγή της έρευνας γράφων. Το κίνητρό 

µας πηγάζει από προβλήµατα εφαρµοσµένης ροµποτικής, όπως θα εξηγηθούν στο 

κεφάλαιο 1.3. Σαν εισαγωγή, εξετάζουµε τα ακόλουθα δύο προβλήµατα, τα οποία 

µπορούν και τα δύο να ανοιχθούν σε έρευνες γράφων: 

 

1. Ένας φυγάδας κρύβεται σε ένα κτίριο και µια οµάδα ενός ή 

περισσότερων ερευνητών προσπαθεί να τον συλλάβει. Το κτίριο 

αντιπροσωπεύεται από ένα γράφο G  : οι κόµβοι είναι δωµάτια και οι ακµές 

είναι πόρτες µεταξύ των δωµατίων. Και οι ερευνητές και ο φυγάδας 

καταλαµβάνουν τους κόµβους της γραφικής παράστασης και κινούνται από 

κόµβο σε κόµβο ολισθαίνοντας κατά µήκος των ακµών. Ο φυγάδας 

συλλαµβάνεται όταν βρίσκεται στον ίδιο κόµβο µε έναν ερευνητή. Υποτίθεται 

ότι ο φυγάδας έχει τα ακόλουθα χαρακτηριστικά: (α) θέλει να αποφύγει τη 

σύλληψη, (β) είναι αόρατος στους ερευνητές (εκτός αν βρίσκεται στον ίδιο 

κόµβο µε έναν από αυτούς), (γ) γνωρίζει πάντα τις θέσεις των ερευνητών και 

(δ) είναι απείρως γρήγορος. 

 

2. Ένας φυγάδας και µια οµάδα των ερευνητών βρίσκονται µέσα σε µια 

σπηλιά. Η σπηλιά αντιπροσωπεύεται πάλι από ένα γράφο G : οι ακµές είναι 

σήραγγες και οι κόµβοι είναι οι διασταυρώσεις των σηράγγων. Οι ερευνητές 

κινούνται από τον κόµβο σε κόµβο, ολισθαίνοντας κατά µήκος των ακµών:  

σύλληψη πραγµατοποιείται εάν ένας ερευνητής διαβεί κατά µήκος µιας ακµής 

που καταλαµβάνεται από το φυγάδα, ή εάν ο φυγάδας κινηθεί διαµέσου ενός 

κόµβου που καταλαµβάνεται από έναν ερευνητή. Οι προαναφερθείσες 

ιδιότητες του φυγάδα υποτίθεται ότι ισχύουν και σε αυτήν την περίπτωση 

επίσης. 

 

Τα δύο προβλήµατα είναι παρόµοια αλλά διαφέρουν από µια σηµαντική άποψη. 

Στο πρώτο πρόβληµα ο φυγάδας υποτίθεται ότι βρίσκεται στους κόµβους του γράφου 

(τα δωµάτια) , ενώ στο δεύτερο πρόβληµα υποτίθεται ότι βρίσκεται στις ακµές (οι 

σήραγγες).Συνεπώς, θα ονοµάσουµε το πρώτο πρόβληµα έρευνα κόµβων και το 

δεύτερο έρευνα ακµών. Η έρευνα ακµών, όπως θα δειχθεί στην παράγραφο 2.2.2, 

είναι γενικότερη της έρευνας κόµβων. 

Σε αυτή την εργασία θα ασχοληθούµε κυρίως µε την έρευνα ακµών και τη 

σχέση αυτής µε την έρευνα κόµβων. Η κύρια συµβολή της παρούσας εργασίας είναι η 

παρουσίαση, τεκµηρίωση και πειραµατική µελέτη δύο αλγορίθµων: Extra Nodes(EN) 

και Extra Searcher(ES) οι οποίοι ανάγουν µια εσωτερική µονότονη και συνδεδεµένη 

(IMC) έρευνα κόµβων σε  IMC έρευνα ακµών.  Ως βάση για αυτούς θα 

χρησιµοποιηθεί ο αλγόριθµος  έρευνας κόµβων GSST (Guaranteed Search by 

Spanning Tree), όπως παρουσιάστηκε και υλοποιήθηκε από τους Hollinger, Kehagias 

και Gelastopoulos στο [41]. Επίσης αναπτύσσεται και διατίθεται ελεύθερα (στην 

τοποθεσία http://users.auth.gr/~kehagiat/KehagiasSoftware.htm) το λογισµικό που 

υλοποιεί τους δύο αλγορίθµους καθώς και το γραφικό περιβάλλον των GSST, EN και 

ES που απεικονίζει τις λειτουργίες τους. 
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1.2 Προηγούµενες εργασίες 

 

Η θέση του φυγάδα (ακµή ή κόµβος) είναι µια σηµαντική πλευρά του 

προβλήµατος της έρευνας γράφων και µπορεί να χρησιµοποιηθεί για να 

ταξινοµήσουµε τη σχετική βιβλιογραφία.  

Ο όρος έρευνα κόµβων έχει χρησιµοποιηθεί στο παρελθόν για να περιγράψει µια 

εκδοχή έρευνας γράφων του τοποθετηµένου σε ακµή φυγάδα  (e-φυγαδα) [25]. Ως εκ 

τούτου, για να αποφεύγεται η σύγχυση, επαναλαµβάνεται ότι χρησιµοποιούµε την 

έρευνα κόµβων για να αναφερθούµε στην αναζήτηση ενός τοποθετηµένου σε κόµβο 

φυγάδα (n-φυγάδα). 

Μια άλλη σηµαντική πτυχή του προβλήµατος της έρευνας γράφων είναι η 

ορατότητα των ερευνητών . ∆ηλαδή, λέµε ότι ο φυγάδας είναι ορατός εάν οι 

ερευνητές ξέρουν πάντα τη θέση του και λέµε ότι ο φυγάδας είναι αόρατος εάν οι 

ερευνητές µαθαίνουν τη θέση του µόνο όταν είναι στον ίδιο κόµβο (ή την ακµή) µε 

αυτόν. 

Πρόσθετα χαρακτηριστικά της έρευνας γράφων είναι εάν αυτή είναι εσωτερική 

(οι ερευνητές µπορούν µόνο να κινηθούν κατά µήκος των ακµών του γράφου) ή όχι 

(ένας ερευνητής µπορεί, σε ένα βήµα, να µεταβεί σε οποιοδήποτε κόµβο της 

γραφικής παράστασης –αυτό το ονοµάζουµε διακτίνιση ), µονότονη (ο φυγάδας δεν 

µπορεί ποτέ να επιστρέψει σε ένα ήδη καθαρισµένο µέρος του γράφου) και συνεκτική 

(τα καθαρισµένα µέρη διαµορφώνουν ένα συνδεδεµένο υπογράφο). Αυτοί οι όροι θα 

οριστούν αυστηρά στην ενότητα 2. 

Παρουσιάζουµε τώρα µια συνοπτική επισκόπηση της βιβλιογραφίας πάνω στην 

έρευνα σε γράφους. Οι πρώιµες εργασίες περιλαµβάνουν το [6] όπου διατυπώθηκε το 

πρόβληµα της έρευνας σπηλιών και το [31] όπου παρουσιάστηκε η πρώτη 

µαθηµατική µελέτη του προβλήµατος. Το πρόβληµα ανακαλύφθηκε πάλι ανεξάρτητα 

λίγο αργότερα από την πιο πρόσφατη [32]. Το πρόβληµα της έρευνας ακµών 

εξετάστηκε στα πλαίσια της θεωρίας γράφων στην [29]. Η ήδη αναφερθείσα 

παραλλαγή έρευνας κόµβων (που εξετάζει  στην πραγµατικότητα τον e- φυγάδα) 

εµφανίστηκε ελάχιστα νωρίτερα στην [25]. Μια άλλη παραλλαγή, αποκαλούµενη 

µικτή αναζήτηση (και πάλι εξέταση του e-φυγάδα) εµφανίστηκε στην [5] και 

µελετήθηκε περαιτέρω στις [35,38]. Η µελέτη της συνδεδεµένης αναζήτησης ακµών 

άρχισε σχετικά πρόσφατα  δείτε [2,3,11,13,14,39]. Λίγα πράγµατα έχουν δηµοσιευτεί 

σχετικά µε την αληθινή έρευνα κόµβων, δηλαδή την αναζήτηση ενός τοποθετηµένου 

σε κόµβο φυγάδα. Υπάρχει µια ιδιαίτερη βιβλιογραφία στην αναζήτηση των ορατών 

τοποθετηµένων σε κόµβο φυγάδων, την οποία δεν θα συζητήσουµε, δεδοµένου ότι η 

αναζήτηση ορατών φυγάδων είναι έξω από το αντικείµενο της παρούσας εργασίας. 

Απλά αναφέρεται ότι µια σηµαντική πρώιµη εργασία είναι η [30]. Η έρευνα γράφων 

συσχετίζεται επίσης µε διάφορες παραµέτρους των γράφων, από τις οποίες αρκετά 

σηµαντικές το πλάτος µονοπατιού και ο διαχωρισµός των κορυφών. Αυτές οι 

παράµετροι συζητούνται σε διάφορες δηµοσιεύσεις, π.χ., στις [4,8,9,24,25,36]. Τέλος 

υπάρχουν διάφορες επισκοπήσεις της βιβλιογραφίας αναζήτησης σε γράφους: µια 

παλαιά και βαθιά είναι  η [4], µια πιο πρόσφατη είναι η [1] και πολύ πρόσφατη και 

εκτενής είναι η [12]. 

Οι προαναφερθείσες εργασίες υιοθετούν µια θεωρητική προσέγγιση. Ενώ 

υπάρχει πολλή συζήτηση για τους αλγορίθµους έρευνας γράφων, έχουµε βρει λίγους 

πραγµατικά εφαρµοσµένους αλγορίθµους που µπορούν να αντιµετωπίσουν σχετικά 

µεγάλους γράφους (µε εξαίρεση τους αλγορίθµους αναζήτησης σε δέντρα). Μια πιο 

εφαρµοσµένη µορφή έρευνας εµφανίζεται στη βιβλιογραφία της ροµποτικής, 

παραδείγµατος χάριν στις [15,16,17,27] και το βιβλίο [28]. 
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Αυτές οι εργασίες αποτελούν ουσιαστικά εφαρµογές αλγορίθµων, και 

παρουσιάζουν αριθµητικά και φυσικά πειράµατα, αλλά παρέχουν ελάχιστη 

θεωρητική αιτιολόγηση των µεθόδων τους. Πιο συγκεκριµένα , η διάκριση µεταξύ 

της έρευνας ακµών και κόµβων συχνά παρανοείται. Η διευκρίνιση αυτής της 

διάκρισης και ο συνδυασµός της ροµποτικής και στοιχείων της θεωρίας γράφων 

γίνεται σε δύο τεχνικές αναφορές των [20,23].  

Τέλος, στην [41] αναλύεται το πρόβληµα της αναζήτησης ενός αόρατου, n-

φυγάδα. Εξετάζεται επίσης η σχέση µε το πρόβληµα του αόρατου, e-φυγάδα . Επίσης 

παρουσιάζεται και τεκµηριώνεται, θεωρητικά και πειραµατικά, ο αλγόριθµος  

έρευνας κόµβων GSST (Guaranteed Search by Spanning Tree), σε διάφορες 

παραλλαγές. Το εν λόγω έγγραφο ασχολείται κυρίως  µε εσωτερική, µονότονη, 

συνδεδεµένη (IMC) έρευνα κόµβων καθώς αυτή η εκδοχή του προβλήµατος είναι και 

η πιο σχετική µε τις εφαρµογές ροµποτικής. 

 

1.3 Πιθανές εφαρµογές 

 

Το πρόβληµα µε το οποίο ασχολούµαστε στην παρούσα εργασία, δηλ. Η 

έρευνα γράφων, έχει πολυποίκιλες εφαρµογές.  

 

1. Ροµποτική: Έρευνες σε φυσικούς χώρους εσωτερικούς ή εξωτερικούς από 

οµάδες ροµπότ ή ανθρώπων και ροµπότ. Τα προβλήµατα της έρευνας 

κόµβων και έρευνας ακµών µπορούν να µοντελοποιήσουν την αναζήτηση 

επιζώντων σε καταστάσεις ανάγκης από οµάδες διασωστικών ροµπότ 

(Urban Search And Rescue robots) . ∆εδοµένου ότι οι γράφοι είναι εκ των 

προτέρων γνωστοί,  µπορούµε να χρησιµοποιήσουµε την έρευνα γράφων 

µόνο για προβλήµατα µε γνωστό περιβάλλον (π.χ. πυρκαγιές, 

εγκλωβισµούς αλλά όχι σεισµούς µε κατάρρευση) . Ωστόσο, όπως 

αναλύεται και στην [42], οι αλγόριθµοι που προαναφέρθηκαν µπορούν 

πάντα να συνδυαστούν µε άλλους και να αποτελέσουν ένα µέρος µόνο των 

τελικών αποφάσεων για τις κινήσεις των USAR robots, ανάλογα µε την 

περίσταση. 

2. Στατιστική: Παραγοντοποίηση Bayesianών δικτύων. Τα Bayesian δίκτυα 

χρησιµοποιούνται για την απεικόνιση πολλών εξαρτώµενων γεγονότων 

(κόµβοι) και τις πιθανότητες της µετάβασης από το ένα στο άλλο (ακµές). 

Χρησιµοποιώντας της τιµές των δεσµευµένων αυτών πιθανοτήτων 

µπορούµε να υπολογίσουµε την συνδυασµένη πιθανότητα κάθε γεγονότος 

συνολικά. Η διαδικασία εύρεσης της αντίστοιχης συνάρτησης ονοµάζεται 

παραγοντοποίηση του δικτύου και η πολυπλοκότητά της µπορεί να 

µειωθεί από εκθετική (στο µέγεθος του δικτύου) µέχρι και σε γραµµική σε 

αρκετές περιπτώσεις µε τη χρήση της έρευνας ακµών και της 

αποσύνδεσης (treewidth) που αναφέρεται παρακάτω. 

3. Γενικότερα, πολυπλοκότητα αλγορίθµων: Οι αλγόριθµοι έρευνας ακµών 

µπορούν να χρησιµοποιηθούν για να µειώσουν την, αλλιώς εκθετική, 

πολυπλοκότητα των αλγορίθµων αποσύνδεσης γράφου (treewidth, 

pathwidth decomposition). Αυτοί οι αλγόριθµοι βρίσκουν εφαρµογή σε 

πολλούς τοµείς όπως η σχεδίαση συστηµάτων VLSI, η αξιοπιστία 

δικτύων, η σχεδίαση τηλεπικοινωνιακών δικτύων, η παραγοντοποίηση  

Cholesky, η επεξεργασία της φυσικής γλώσσας, η βελτιστοποίηση 

µεταγλώττισης γλωσσών προγραµµατισµού κ.ά. 
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Σε κάποιες από τις παραπάνω εφαρµογές µας ενδιαφέρει η έρευνα κόµβων, 

αλλά σε πολύ περισσότερες η έρευνα ακµών. Εποµένως οι αλγόριθµοι που θα 

παρουσιάσουµε στο Κεφ. 4  για την τροποποίηση  έρευνας κόµβων σε έρευνα ακµών, 

αν και προσεγγιστικοί, µπορούν να αποδειχθούν ιδιαίτερα χρήσιµοι. 

Επιπλέον, πιστεύουµε ότι τα προγράµµατα γραµµής εντολών και το γραφικό 

περιβάλλον έρχονται να καλύψουν ένα µεγάλο κενό, δεδοµένου ότι (ίσως 

αναπάντεχα) δεν υπάρχουν δηµόσια διαθέσιµες υλοποιήσεις των διαφόρων 

αλγορίθµων έρευνας γράφων οι οποίοι έχουν κατά καιρούς δηµοσιευθεί στην 

βιβλιογραφία. Το δε GUI είναι αρκετά εύχρηστο και δίνει εποπτική αντίληψη του 

προβλήµατος . 
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2.Περιγραφή του προβλήµατος 
 

Για την καλύτερη κατανόηση του προβλήµατος, για την περιγραφή των 

καταστάσεων που προκύπτουν στα στοιχεία των γράφων και για την περιγραφή των 

αλγορίθµων είναι απαραίτητη η παρουσίαση των βασικών εννοιών και συµβολισµών. 

Αυτή γίνεται στο κεφάλαιο που ακολουθεί (Κεφ. 2.1), ενώ στο Κεφ. 2.2 αναλύεται η 

σχέση των δύο τύπων έρευνας που µας απασχολούν. Τα θεωρήµατα και ορισµοί που 

ακολουθούν προέρχονται από την τεχνική έκθεση [41]. 

2.1 Βασικές έννοιες και συµβολισµοί 

 

Συµβολίζουµε τους γράφους  µε έντονα γράµµατα, π.χ. ( )EV ,=G  όπου V είναι 

το σύνολο των κόµβων και E το σύνολο των ακµών. Πάντα θα ονοµάζουµε τους 

κόµβους του G ως { }NV ,...,2,1= ( συνεπώς ο γράφος περιέχει N κόµβους, δηλαδή 

NV =  ). Οι ακµές αναφέρονται ως { }vu,  µε Vvu ∈, . Συνήθως θα γράφουµε uv, για 

απλούστευση, αλλά πρέπει να σηµειώσουµε ότι το vu  και το uv  είναι η ίδια ακµή (µε 

άλλα λόγια µελετάµε µη κατευθυνόµενους γράφους). Ασχολούµαστε µόνο µε 

συνδεδεµένους γράφους χωρίς βρόγχους ή πολλαπλές ακµές. Επιπροσθέτως, για να 

αποφευχθούν µερικές εκφυλισµένες περιπτώσεις, πάντα θεωρούµε γράφους µε 

τουλάχιστον µία ακµή ( και τουλάχιστον δύο κόµβους). 

Οι κόµβοι u,v ονοµάζονται γειτονικοί αν και µόνο αν Euv∈ . 

∆εδοµένης µιας ακολουθίας Luuu ...21 , µε Euu ii ∈+1  για i = ,1,...,2,1 −L  λέµε  

ότι το Luuu ...21  είναι: 

 

1. µονοπάτι αν και µόνο αν i ju u≠  για { }Lji ,...,2,1, ∈  και ji ≠ . 

2. κύκλος αν και µόνο αν ji uu ≠  για { }Lji ,...,2,1, ∈ (και ji ≠ ) εξόν από 

Luu =1 .  

 

∆ένδρο ονοµάζουµε ένα συνεκτικό γράφο χωρίς κύκλους. Ισοδύναµοι ορισµοί 

είναι οι  εξής:  

 

α) δένδρο είναι ένας γράφος στον οποίο υπάρχει µοναδικό µονοπάτι µεταξύ 

κάθε ζευγαριού κόµβων του.  

β) δένδρο ονοµάζουµε ένα συνδεδεµένο γράφο µε N κόµβους και N - 1 ακµές. 

Τα φύλλα ενός δένδρου είναι οι κόµβοι του που έχουν ακριβώς έναν γείτονα. 

 

Ριζωµένο ονοµάζουµε ένα δέντρο µε ένα διακεκριµένο κόµβο 0u  που 

ονοµάζεται ρίζα του δέντρου. ∆εδοµένου ενός δένδρου ( )EV ,====T , θα συµβολίζουµε 

το ίδιο δένδρο, αλλά πλέον ριζωµένο µε ρίζα 0u , ως ( )0,,
0

uEVu =T . Αν πάρουµε 

οποιονδήποτε κόµβο 0uuL ≠  και θεωρώντας LL uuuu 110 ... − το µοναδικό µονοπάτι από 

το 0u  στον Lu , τότε ο 1−Lu είναι ο γονέας του Lu , και ο Lu είναι το παιδί του 1−Lu . 

∆εδοµένου ενός κόµβου x, τα παιδιά του, τα παιδιά των παιδιών του και ακολούθως 

ονοµάζονται απόγονοι του x. ∆εδοµένου ενός ριζωµένου δένδρου ( )xEVx ,,=T  και 

ενός κόµβου y, θεωρούµε το σύνολο των κόµβων 
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[ ] { }yyzzyV   τουαπόγονος ή  οείναι   :=  

 

και το σύνολο των ακµών 

 

[ ] [ ]{ }yVuzEzuzuyE ∈∈= , και :  

 

Ας σηµειωθεί ότι και το [ ]yV  και το [ ]yE  εξαρτώνται και από το y και από το x. Ο 

γράφος [ ] [ ]( )yEyV ,  είναι δένδρο (υποδένδρο του xT ). Το ριζωµένο δένδρο 

[ ] [ ]( )yyEyV ,,  θα συµβολίζεται ως [ ]yxT . 

Γεννητορικό δένδρο (spanning tree) ενός γράφου G ονοµάζουµε κάθε δένδρο T 

που περιέχει όλους τους κόµβους του G και κάθε ακµή του οποίου είναι και ακµή του 

G. 

Με άλλα λόγια το Τ ορίζει κάποιο υποσύνολο των ακµών του G το οποίο  

1. εξακολουθεί να κρατά τον G συνεκτικό, και 

2. δεν περιέχει κύκλο. 

 

Στρατηγική έρευνας σε ένα γράφο ( )EV ,=G  λέγεται µια ακολουθία 

διατεταγµένων ζευγών κόµβων: 

            ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( 1 , 1 , 2 , 2 ,..., , ),fin finu v u v u t v t=S  

για τα οποία ισχύει ( ) ( ){ } Etvtu ∈,  για fintt ,...,2,1= . Ονοµάζουµε ( ) ( ) ( )( )tvtut ,=S  

την t-οστή κίνηση ( ή βήµα ) της στρατηγικής έρευνας. Η t-οστή κίνηση µπορεί να 

είναι µία από τις ακόλουθες: 

 

1. τοποθέτηση ενός ερευνητή στον κόµβο v ( στην οποία περίπτωση ( ) 0=tu  και 

( ) Vtv ∈  ) ή 

2.  ολίσθηση ενός ερευνητή από κόµβο ( ) Vtu ∈  σε κόµβο ( ) Vtv ∈  ή 

3. αφαίρεση ενός ερευνητή από κόµβο u ( στην οποία περίπτωση ( ) Vtu ∈  και 

( ) 0=tv  ). 

 

Θα χρησιµοποιήσουµε επίσης τον πιο υπαινικτικό συµβολισµό ( ) ( )vut →=S ,  

που σηµαίνει ότι ένας ερευνητής µετακινείται από τον κόµβο u στον κόµβο v. Οι 

κινήσεις της µορφής: v→0  ( ένας νέος ερευνητής τοποθετείται στο γράφο ) και 

0→u  ( ένας ερευνητής αφαιρείται από το γράφο )  ενέχουν τη φανταστική αφετηρία 

0 ( δεν είναι στοιχείο του συνόλου V), στον οποίο οι ερευνητές στέκονται όταν δεν 

συµµετέχουν ενεργά στην έρευνα του γράφου. Ο φυγάδας δεν έχει πρόσβαση στην 

αφετηρία. 

∆εδοµένης µιας έρευνας S, ο αριθµός των ερευνητών µέσα στο γράφο τη στιγµή 

t  θα συµβολίζεται ως ( )tsn ,S . Ο µέγιστος αριθµός ερευνητών που χρησιµοποιεί η S 

θα συµβολίζεται ως ( )Ssn , δηλαδή 

( ) ( ).,max tsnsn
t

SS =  

Αυτοί οι αριθµοί δεν πρέπει να συγχέονται µε τον αριθµό ερευνητών ενός 

γράφου, ο οποίος θα οριστεί παρακάτω στην παράγραφο 2.2.1. 

Τέλος, λέµε ότι ένας κόµβος u φυλάσσεται τη στιγµή t αν και µόνο αν ένας 

ερευνητής βρίσκεται στον u ( τη στιγµή t ). Ειδάλλως λέµε ότι ο u είναι αφύλακτος. 
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Ένα µονοπάτι Luuu ...21 αποκαλείται n-αφύλακτο (node unguarded)  αν και µόνο αν οι 

κόµβοι iu  ( Li ,...,2,1= ) είναι αφύλακτοι ( τη στιγµή t). Αλλιώς αποκαλείται             

n-φυλασσόµενο ( n-guarded ). Το µονοπάτι αποκαλείται e-αφύλακτο (edge unguarded) 

αν και µόνο αν οι κόµβοι iu  ( Li ,...,2,1= ) είναι αφύλακτοι ( τη στιγµή t) και             

e-φυλασσόµενο αλλιώς. Είναι προφανές ότι  

 

. αφύλακτο-eείναι  ..., αφύλακτο-nείναι   ...

, αφύλακτο-nείναι  ...  αφύλακτο-eείναι   ...

2121

13221

LL

LL

uuuuuu

uuuuuu

⇒

⇒ −
 

 

Ο λόγος ύπαρξης δύο ορισµών είναι ότι ο πρώτος σχετίζεται µε επαναµόλυνση 

κόµβων, ενώ ο δεύτερος µε επαναµόλυνση ακµών, όπως θα δούµε στην παράγραφο 

2.2.2. 

2.2 Έρευνα κόµβων και έρευνα ακµών 

2.2.1 Κανόνες των παιχνιδιών 

 

Επαναλαµβάνουµε τις υποθέσεις που εισήχθηκαν στην ενότητα 1 σχετικά µε το 

φυγάδα. ∆ηλαδή, ο φυγάδας θέλει να αποφύγει τη σύλληψη, είναι αόρατος στους 

ερευνητές (εκτός αν είναι τοποθετηµένος στον ίδιο κόµβο), γνωρίζει πάντα τις θέσεις 

των ερευνητών και κινείται απείρως γρήγορα. Τελική απόρροια όλων αυτών των 

υποθέσεων είναι ότι (και στην έρευνα κόµβων και στην έρευνα ακµών) ο φυγάδας 

µπορεί (και θα το κάνει) πάντα να αποφύγει τη σύλληψη εάν ένας δρόµος διαφυγής 

είναι διαθέσιµος. Ως εκ τούτου, από την άποψη των ερευνητών, µπορούµε να 

σκεφτούµε την έρευνα γράφων ως διαδικασία αποκλεισµού των δρόµων διαφυγής. 

Αυτό εκφράζεται ως εξής: 

 

1. µια ακµή (ένας κόµβος) θεωρείται βρώµικη αν θα µπορούσε πιθανώς να 

περιέχει τον φυγάδα και καθαρή σε αντίθετη περίπτωση (π.χ. ένας κόµβος που 

περιέχει ερευνητή είναι καθαρός). 

 

2. Μια ήδη καθαρή ακµή ή ένας ήδη καθαρός κόµβος ενδέχεται να ξαναγίνουν 

βρώµικοι ( π.χ. όταν ένα προηγουµένως φυλασσόµενο µονοπάτι µεταξύ ενός 

καθαρού και ενός βρώµικου κόµβου γίνει ξαφνικά αφύλακτο).Η περίπτωση 

αυτή ονοµάζεται επαναµόλυνση. 

 

3. Έρευνα γράφου είναι η διαδικασία κατά την οποία σταδιακά µειώνεται το 

µολυσµένο σύνολο ( από κόµβους και ακµές) ωσότου γίνει κενό ( δηλαδή ο 

φυγάδας δεν έχει πλέον καµιά διαδροµή διαφυγής ). 

 

Τα παραπάνω αποτελούν µια συντηρητική προσέγγιση  που στην ουσία 

απαλείφει τον φυγάδα από την έρευνα γράφων και των αντικαθιστά µε το βρώµικο 

σύνολο. Έτσι, µπορούµε πλέον να αντιληφθούµε την έρευνα κόµβων (ακµών) ως ένα 

παιχνίδι κόµβων (ακµών) για ένα παίκτη. Στα δύο αυτά παιχνίδια ο παίκτης ελέγχει 

όλους τους ερευνητές, σαν τα κοµµάτια σε ένα παιχνίδι σκάκι. Για λόγους που θα 

εξηγηθούν παρακάτω, αντικαθιστούµε τους όρους καθαρός και βρώµικος µε τους 

όρους n-καθαρός και n-βρώµικος (στο παιχνίδι κόµβων) και e-καθαρός και e-

βρώµικος (στο παιχνίδι ακµών). 
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-------------------------------------------------------------------------------------------------- 

Κανόνες του παιχνιδιού κόµβων 
N1. Σε χρόνο 0=t   όλοι οι κόµβοι είναι n-βρώµικοι και κανένας ερευνητής δεν 

υπάρχει εντός του γράφου. 

 

N2. Σε χρόνους ,...2,1=t   ο παίκτης εκτελεί µία από τις παρακάτω κινήσεις: 

N2a. τοποθέτηση ερευνητή σε κόµβο, 

N2b. αφαίρεση ερευνητή από κόµβο, 

N2c. ολίσθηση ενός ερευνητή κατά µήκος µιας ακµής. 

 

N3. Ένας n-βρώµικος κόµβος γίνεται n-καθαρός όταν ένας ερευνητής τοποθετηθεί 

εντός του. 

 

N4. Ένας n-καθαρός κόµβος  u  γίνεται n-βρώµικος όταν συνδέεται µε κάποιον      

n-βρώµικο κόµβο v  διαµέσου ενός  n-αφύλακτου µονοπατιού. 

 

N5. Μια ακµή είναι n-βρώµικη αν ακουµπά σε κάποιον n-βρώµικο κόµβο. Ειδάλλως 

είναι n-καθαρή. 

 

N6. Το παιχνίδι ολοκληρώνεται όταν όλοι οι κόµβοι (και συνεπώς όλες οι ακµές) 

γίνουν n-καθαροί. 

-------------------------------------------------------------------------------------------------- 

 

Κανόνες του παιχνιδιού ακµών 
N1. Σε χρόνο  0=t   όλες οι ακµές είναι  e-βρώµικες  και κανένας ερευνητής δεν 

υπάρχει εντός του γράφου. 

 

N2. Σε χρόνους ,...2,1=t   ο παίκτης εκτελεί µία από τις παρακάτω κινήσεις: 

N2a. τοποθέτηση ερευνητή σε κόµβο, 

N2b. αφαίρεση ερευνητή από κόµβο, 

N2c. ολίσθηση ενός ερευνητή κατά µήκος µιας ακµής. 

 

N3. Μια e-βρώµικη ακµή καθίσταται e-καθαρή όταν κάποιος ερευνητής την διαβεί. 

 

N4. Μια e-καθαρή ακµή  uv  γίνεται e-βρώµικη όταν συνδέεται µε κάποια               

e-βρώµικη ακµή  xy  µέσω ενός e-αφύλακτου µονοπατιού. 

 

N5. Ένας κόµβος είναι e-βρώµικος αν είναι αφύλακτος και ακουµπά σε κάποια e-

βρώµικη ακµή . Ειδάλλως είναι e-καθαρός. 

 

N6. Το παιχνίδι ολοκληρώνεται όταν όλες οι ακµές (και συνεπώς όλοι οι κόµβοι) 

γίνουν e-καθαρές. 

 

 

Παρατήρηση2.1. Ο λόγος για τη χρήση των όρων «n-καθαρός» και «e-καθαρός» 

(αντί απλά καθαρός) είναι ότι µια ακµή µπορεί να είναι καθαρή στο παιχνίδι κόµβων 

και βρώµικη στο παιχνίδι ακµών. Ένα παράδειγµα θα διαφωτίσει αυτό το σηµείο. 

Εξετάστε το γράφο στο σχήµα 1 και την στρατηγική έρευνας ,10 →    ,10 →    

,21→    ,42 →    .34 →    Εάν αυτή η στρατηγική ακολουθηθεί σε ένα παιχνίδι 
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κόµβων, µετά από την τελική κίνηση όλοι οι κόµβοι είναι n-καθαροί και έτσι όλες οι 

ακµές είναι επίσης n-καθαρές. Αλλά σε ένα παιχνίδι ακµών, µετά από την τελική 

κίνηση, η ακµή  { }3,1    ακόµα δεν έχει διασχιστεί και ως εκ τούτου είναι ακόµα e-

βρώµικη. Γενικότερα, ενώ οι όροι «n-καθαρός» και «e-καθαρός» αναφέρονται σε 

παρόµοιες φυσικές καταστάσεις, δεν υπάρχει κανένας a priori λόγος για να είναι οι 

µαθηµατικοί ορισµοί τους ισοδύναµοι (στην ενότητα 2.3 θα δείξουµε ότι είναι 

ισοδύναµοι αν ορισµένες προϋποθέσεις ικανοποιούνται). 

 

 

 

 
Σχήµα 2.1: Ένας γράφος στον οποίο ο καθαρισµός κόµβων και ο καθαρισµός ακµών 

δεν είναι ισοδύναµοι. Παραδείγµατος χάριν, αν τοποθετήσουµε έναν ερευνητή στον 

κόµβο 0 ( ,10 → ), τοποθετώντας έπειτα έναν ερευνητή στο 1 και στέλνοντας τον 

στους 2, 4, 3  ακολούθως ( ,10 →    ,21→    ,42 →    34 → ) ολοκληρώνεται ο 

καθαρισµός κόµβων αλλά όχι και ο καθαρισµός ακµών. 

 

 

Παρατήρηση2.2.. Στο παιχνίδι ακµών οι καθαρές ακµές «καταγράφονται» στο τέλος 

κάθε κίνησης. Αυτό είναι σηµαντικό να ειπωθεί στην περίπτωση που µια ακµή e-

καθαρίζει και µετά e-βρωµίζει κατά τη διάρκεια της ίδιας κίνησης ( δηλαδή για ένα 

συγκεκριµένο t ). Για να εξηγήσουµε την παρατήρηση, υποθέτουµε ότι στο γράφο 

του σχήµατος 2.1, οι παρακάτω κινήσεις εκτελούνται: 10 →  στο 1=t , 21→  στο 

2=t . Σε αυτή την περίπτωση η ακµή { }2,1  αρχικά e-καθαρίζει (γιατί διασχίζεται) και 

ακολούθως e-βρωµίζει, πάλι σε χρόνο 2=t . Μετά το πέρας της δεύτερης κίνησης, η 

ακµή { }2,1  είναι e-βρώµικη. 
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Θα παρατεθεί τώρα ένας πιο λεπτοµερής συµβολισµός σχετικά µε καθαρούς 

(βρώµικους) κόµβους (ακµές). Για το παιχνίδι κόµβων θα ακολουθήσουµε τους 

παρακάτω συµβολισµούς. 

 

( ) { }
( ) { }
( ) { }
( ) { }
( ) ( ) ( )( ) .  χρόνο σε   οείναι  ,

;βρώµικη-nείναι   η, χρόνο σε  :

;καθαρή-nείναι   η, χρόνο σε  :

;βρώµικος-nείναι   ο, χρόνο σε :

; καθαρός-n είνα  ο  , χρόνο σε :

tάόntEtVt

uvtEuvtE

uvtEuvtE

utVutV

utVutV

C

N

C

N

C

N

D

N

C

N

D

N

C

N

φοςγρςκαθαρ−=

∈=

∈=

∈=

∈=

G

 

 

Χρησιµοποιούµε τους αντίστοιχους συµβολισµούς για το παιχνίδι ακµών, αλλά 

µε δείκτη Ε (αντί για Ν): ( )tV C

E  ,  ( )tV D

E  ,  ( )tEC

E  ,  ( )tE D

E  ,  ( ) ( ) ( )( )tEtVt C

E

C

E

C

E ,=G  . 

Προφανώς ισχύουν: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , ,

, , , .

C D C D C D C D

N N N N N N N N

C D C D C D C D

E E E E E E E E

V t V t V V t V t E t E t E E t E t

V t V t V V t V t E t E t E E t E t

∪ = ∩ =∅ ∪ = ∩ =∅

∪ = ∩ =∅ ∪ = ∩ =∅
 

 

Παρατήρηση 2.3. Οι ορισµοί των n-καθαρών και e-καθαρών γράφων είναι συνεπείς, 

δηλαδή τα ( ) ( )( )tEtV C

N

C

N ,   και  ( ) ( )( ),C C

E EV t E t  αποτελούν γράφους. Πιο 

συγκεκριµένα: 

 

1. στο παιχνίδι κόµβων ο ( )C

N tG  αποτελείται από τους n-καθαρούς 

κόµβους και όλες τις ακµές µεταξύ τέτοιων κόµβων (αυτές είναι ακριβώς το 

σύνολο ( )C

NE t ). 

 

2. στο παιχνίδι ακµών ο ( )C

E tG  αποτελείται από e-καθαρές ακµές και 

καµία από αυτές δεν µπορεί να αφεθεί «ελεύθερη», δηλ. εάν ( )C

E
uv E t∈  τότε 

( ), C

Eu v V t∈ .  Επιπλέον το σύνολο ( )tV C

E   µπορεί να περιέχει τους 

φρουρούµενους κόµβους δίπλα στις e-βρώµικες ακµές.  Τέτοιοι κόµβοι 

µπορούν να εµφανιστούν ως αποµονωµένα συστατικά του ( )C

E tG .  

 

 

Στην παρούσα εργασία θα επικεντρωθούµε σε κάποιες περιορισµένες 

εκδοχές των παιχνιδιών ακµών και κόµβων. Πιο συγκεκριµένα, οι περιορισµοί 

αφορούν τις επιτρεπόµενες στρατηγικές έρευνας και είναι οι ακόλουθοι: 

 

1. Καλούµε µια στρατηγική έρευνας ριζωµένη αν και µόνο  αν οι 

ερευνητές µπορούν να τοποθετηθούν σε µοναδικό, προκαθορισµένο κόµβο 

0u , που ονοµάζεται ρίζα της έρευνας. 

 

2. Ονοµάζουµε µια στρατηγική έρευνας εσωτερική αν και µόνο αν οι 

ερευνητές από τη στιγµή που εισέρχονται στο γράφο (a) µπορούν να κινηθούν 

µόνο κατά µήκος των ακµών και (b) δεν αφαιρούνται ποτέ τον το γράφο. 
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∆ηλαδή η «διακτίνιση» (η αυθαίρετη µετακίνηση ενός ερευνητή από ένα 

κόµβο σε έναν άλλο, ασχέτως µε την συνεκτικότητα του γράφου) 

απαγορεύεται.* 

 

3. Στο παιχνίδι κόµβων αποκαλούµε µια στρατηγική έρευνας S µονότονη 

αν και µόνο αν το σύνολο των καθαρών κόµβων ποτέ δεν µειώνεται: 

( ) ( )1+⊆ tVtV C

N

C

N  για κάθε t. Με άλλα λόγια, απ’ τη στιγµή που ένας κόµβος 

καθίσταται n-καθαρός, δεν ξαναγίνεται n-βρώµικος ποτέ. Ο ορισµός είναι 

όµοιος και για το παιχνίδι ακµών. ∆ηλαδή, η S είναι µονότονη σε ένα παιχνίδι 

ακµών αν και µόνο αν ( ) ( )1+⊆ tEtE C

E

C

E  για κάθε t.** 

 

4. Στο παιχνίδι κόµβων (οµοίως και στο παιχνίδι ακµών) καλούµε µια 

στρατηγική έρευνας συνδεδεµένη αν και µόνο αν ο καθαρός γράφος ( )tC

NG  (ή 

οµοίως ο ( )tC

EG ) είναι συνδεδεµένος για ,...2,1=t  

 

Στην παράγραφο 2.3 θα εξετάσουµε  γενικές, χωρίς περιορισµούς, έρευνες 

γράφων. Στην υπόλοιπη εργασία θα επικεντρωθούµε στις εσωτερικές µονότονες 

(internal monotone –IM), στις εσωτερικές συνδεδεµένες (internal connected –IC) και 

ιδίως στις εσωτερικές µονότονες συνδεδεµένες ( internal monotone connected –IMC) 

έρευνες κόµβων (ακµών). Η εστίαση αυτή είναι αποτέλεσµα του ενδιαφέροντος σε 

πρακτικά προβλήµατα καταδίωξης / διαφυγής που εµφανίζονται στον τοµέα της 

ροµποτικής. Η φύση των προβληµάτων αυτών επιβάλλει τους περιορισµούς στην 

έρευνα. 

 

1. Ο περιορισµός της εσωτερικότητας προκύπτει από το γεγονός ότι ένα ροµπότ 

δεν µπορεί να «διακτινιστεί». Μπορεί µόνο να κινείται ανάµεσα σε δωµάτια 

και τις πόρτες που τα συνδέουν. Στο µοντέλο του γράφου, αυτό το γεγονός 

αντιστοιχεί στη χρήση µόνο κινήσεων ολίσθησης. 

 

2. Παροµοίως, η ύπαρξη ρίζας υποδηλώνει το γεγονός ότι συνήθως ένα 

περιβάλλον έχει µία µοναδική είσοδο από την οποία τα ροµπότ µπορούν να 

εισέλθουν. 

 

 

 

 

 

 

 

----------------------------------------------------------------------------------------- 
*Εφόσον κανείς ερευνητής δεν αποµακρύνεται από το γράφο κατά τη διάρκεια µιας εσωτερικής 

έρευνας S, έχουµε ( ) ( )
fintsnsn ,SS =  µε fint  τη χρονική διάρκεια της έρευνας. 

 

**Μια σηµαντική λεπτοµέρεια πρέπει να αναφερθεί σε αυτό το σηµείο. Υπάρχει µια ιδιότητα που 

λέγεται ισχυρή µονοτονία, που χαρακτηρίζει στρατηγικές στις οποίες µια ακµή που έχει διασχιστεί δεν 

ξαναγίνεται ποτέ e-βρώµικη. Η στρατηγική της παρατήρησης 2.2 είναι µονότονη ( αφού 

( ) ( )1 2C C

E EE E= =∅ ) αλλά όχι και ισχυρά µονότονη. Αυτή η επισήµανση γίνεται για λόγους 

πληρότητας , στα παρακάτω δεν θα χρησιµοποιήσουµε την ισχυρή µονοτονία. 
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3. Η συνεκτικότητα και η µονοτονία είναι επιθυµητά (αλλά όχι υποχρεωτικά) 

χαρακτηριστικά σε µία έρευνα από ροµπότ. Παραδείγµατος χάριν, σε ένα 

εχθρικό περιβάλλον είναι προτιµότερο η καθαρισµένη περιοχή να αποτελείται 

από µια ενιαία συνδεδεµένη περιοχή, η οποία είναι ευκολότερο να φρουρηθεί 

και να ελεγχθεί από πολλές περιοχές. Οµοίως, εάν ένα υψηλό κόστος 

συνδέεται µε τον καθαρισµό µιας περιοχής, είναι επιθυµητό αυτή η περιοχή 

να καθαρίζεται µόνο µία φορά, δηλ.,η αναζήτηση να είναι µονότονη. 
 

Ένας δεδοµένος γράφος G µε πλήθος κόµβων N  µπορεί σίγουρα να n-

καθαριστεί χρησιµοποιώντας N ερευνητές, απλά τοποθετώντας έναν ερευνητή σε 

κάθε κόµβο. Συνήθως ο G µπορεί να καθαριστεί µε πολύ λιγότερους ερευνητές. Ο 

αριθµός έρευνας κόµβων του G, που συµβολίζεται µε ( )GNs , είναι ο ελάχιστος 

αριθµός ερευνητών που απαιτούνται για να n-καθαριστεί ο G. Με την εφαρµογή των 

πρόσθετων περιορισµών στην στρατηγική έρευνας, έχουµε επιπρόσθετους αριθµούς 

έρευνας: 

 

( )i

Ns G   : ελάχιστος αριθµός ερευνητών που 

απαιτούνται για να καθαριστεί ο G µε : 

Εσωτερική στρατηγική έρευνας  

κόµβων. 

 

( ) :im

Ns G  

 

                   -//- 

 

IM στρατηγική έρευνας κόµβων. 

 

( )ic

Ns G   : 

  

                  -//- 

 

IC στρατηγική έρευνας κόµβων. 

 

( )imc

Ns G :

     

                 -//- 

 

IMC στρατηγική έρευνας κόµβων. 

 

 
Για το παιχνίδι ακµών ορίζονται αντίστοιχα οι αριθµοί έρευνας ακµών: ( )GEs  ,  

( )Gi

Es  ,  ( )Gim

Es  ,  ( )Gic

Es  ,  ( )Gimc

Es  . 

Στην περίπτωση της ριζωµένης έρευνας µε ρίζα τον κόµβο x, ο συµβολισµός 

γίνεται ως εξής: ( )xsN ;G  είναι ελάχιστος αριθµός ερευνητών που απαιτούνται για να 

n-καθαριστεί ο G µε στρατηγική µε ρίζα το x. Οµοίως για ( )xsE ;G  ,  ( )xs i

E ;G  και 

ούτω καθ’ εξής. Αν ο γράφος G είναι ριζωµένο δένδρο xT , τότε υποθέτουµε ότι 

πάντα καθαρίζεται από ριζωµένες στρατηγικές. Εποµένως ( ) ( )xss ExE ;TT =  ,  

( ) ( )xss i

Ex

i

E ;TT =  και ούτω καθ’ εξής. 

Ελάχιστη ονοµάζεται η στρατηγική καθαρισµού κόµβων η οποία καθαρίζει τον 

G χρησιµοποιώντας ( )GNs  ερευνητές. Ελάχιστη ΙΜ στρατηγική καθαρισµού κόµβων 

ονοµάζεται η ΙΜ στρατηγική καθαρισµού που καθαρίζει τον G χρησιµοποιώντας 

( )Gim

Ns  και παροµοίως για όλες τις άλλες περιπτώσεις, είτε έρευνας κόµβων είτε 

έρευνας ακµών. 
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2.2.2 Σύγκριση των δύο παιχνιδιών 

 

Σε αυτή την ενότητα  συγκρίνουµε την «χωρίς περιορισµούς» έρευνα ακµών και 

κόµβων. Με άλλα λόγια, συγκρίνουµε το αποτέλεσµα µιας στρατηγικής έρευνας S  

όταν χρησιµοποιείται πρώτα σε ένα παιχνίδι κόµβων και έπειτα στο παιχνίδι ακµών, 

όταν παίζονται και τα δύο στον ίδιο γράφο G και χωρίς προϋποθέσεις όπως την 

ύπαρξη ρίζας, την εσωτερικότητα, την µονοτονία ή την συνεκτικότητα. Η ανάλυση 

είναι µετάφραση από την [41] όπου µπορούν να βρεθούν και οι αποδείξεις των 

θεωρηµάτων. 

Η συµπύκνωση της ανάλυσης είναι το Θεώρηµα 2.6 που, απλουστευµένα, λέει 

τα εξής: κάθε στρατηγική έρευνας S είναι τουλάχιστον τόσο αποτελεσµατική στο 

παιχνίδι κόµβων όσο στο παιχνίδι ακµών. Ακριβέστερα, σε κάθε βήµα t από την 

έρευνα, το σύνολο των e-καθαρών κόµβων (και ακµών) είναι ένα υποσύνολο του 

συνόλου των n-καθαρών κόµβων (και ακµών). Ένα άµεσο πόρισµα είναι ότι µια 

στρατηγική έρευνας που καθαρίζει ένα γράφο στο παιχνίδι ακµών τον καθαρίζει 

επίσης και στο παιχνίδι κόµβων. Το αντίστροφο δεν ισχύει, όπως έχουµε ήδη δείξει 

µε το αντιπαράδειγµα της Παρατήρησης 2.1. 

 

Λήµµα 2.4. ∆εδοµένου ενός γράφου G και µιας στρατηγικής έρευνας S, για t=0,1,2,… 

ισχύουν: 

 

( ) ( )( )tEuxEuxtVu D

E

D

E ∈∈∀⇒∈ :       (1) 

 

                                  ( ) ( )( )tVvutEuv C

E

C

E ∈⇒∈ ,                      (2) 

 

Με άλλα λόγια: εάν ένας κόµβος u είναι e-βρώµικος, τότε όλες οι ακµές ux, που 

ακουµπούν στον u,  είναι επίσης e-βρώµικες και εάν µια ακµή uv    είναι e-καθαρή, 

τότε οι κόµβοι u,v είναι e-καθαροί. 

 

Λήµµα 2.5. Εάν κάποιος κόµβος u καθίσταται e-καθαρός ακριβώς τη χρονική στιγµή t, 

τότε κάποιος ερευνητής εισέρχεται στον u τη στιγµή t. 

 

 

Θεώρηµα 2.6. ∆εδοµένου ενός γράφου G και µιας στρατηγικής έρευνας S, ισχύει: 

 

( ) ( ) ( ) ( ).κ:,...2,1,0  για tEtEtVtVt C

N

C

E

C

N

C

E ⊆⊆= αι                             (3) 

 

Πόρισµα 2.7. ∆εδοµένου ενός γράφου G και µιας στρατηγικής έρευνας S, αν η S 

καθαρίζει τον γράφο στο παιχνίδι ακµών, τότε τον καθαρίζει και στο παιχνίδι κόµβων. 

 

Παρατήρηση 2.8. Από το Θεώρηµα 2.6 βλέπουµε πως η έρευνα ακµών είναι πιο 

«αδύναµη» από την έρευνα κόµβων, δηλαδή για κάθε στρατηγική έρευνας, σε κάθε 

βήµα, το σύνολο των καθαρών στοιχείων είναι στο παιχνίδι ακµών µικρότερο ή ίσο 

µε αυτό στο παιχνίδι κόµβων. Υπάρχει µια παραλλαγή της έρευνας ακµών, η 

αποκαλούµενη µικτή έρευνα ακµών που, όπως αποδεικνύεται στο Παράρτηµα Β της 

[41], είναι ισοδύναµη µε την έρευνα κόµβων, δηλαδή οποιαδήποτε στρατηγική 

έρευνας παράγει τα ίδια καθαρά και βρώµικα σύνολα σε κάθε βήµα και του 
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παιχνιδιού ακµών και του παιχνιδιού κόµβων. Αυτό το γεγονός έχει ως συνέπεια το 

ότι η έρευνα κόµβων είναι NP-πλήρης (δεδοµένου ότι η µικτή έρευνα ακµών είναι 

NP-πλήρης [5]).  

2.3 Έρευνες σε δένδρα 

 

Θα παραθέσουµε τώρα παρακάτω, χωρίς αποδείξεις, τα θεωρήµατα σχετικά µε 

την έρευνα σε δένδρα όπως δίνονται στο [41]. Οι έρευνες µε της οποίες θα 

ασχοληθούµε από εδώ και πέρα είναι ριζωµένες εσωτερικές, µονότονες και 

συνδεδεµένες (IMC) και τα θεωρήµατα που ακολουθούν ισχύουν και για το παιχνίδι 

ακµών, και για το παιχνίδι κόµβων. 

 

Θεώρηµα 2.9. Για  ένα δένδρο Τ και µια ριζωµένη εσωτερική στρατηγική έρευνας S, 

αν η S είναι µονότονη και συνδεδεµένη στο παιχνίδι κόµβων, τότε: 

 

( ) ( ) ( ) ( ) 0,1,2,... :   C C C C

E N E Nt V t V t E t E tγια και= = =  

 

και η S  είναι µονότονη και συνδεδεµένη και στο παιχνίδι ακµών. 

 

Θεώρηµα 2.10. Για  ένα δένδρο Τ και µια ριζωµένη εσωτερική στρατηγική έρευνας S 

µε ρίζα 0u , ΑΝ η S είναι µονότονη και συνδεδεµένη στο παιχνίδι ακµών και ικανοποιεί 

µία από τις παρακάτω συνθήκες 

 

Σ1.  ( ) ( ) { }01 , 2 ,C C

E EE E u v=∅ =  

Σ2. ( ) ( ) ( ) { }01 , 2 , 3 ,C C C

E E EE E E u v=∅ =∅ =  

 

ΤΟΤΕ 

( ) ( ) ( ) ( ) 0,1, 2,... :   C C C C

E N E Nt V t V t E t E tγια και= = =  

και η S  είναι µονότονη και συνδεδεµένη και στο παιχνίδι κόµβων. 

 

Θεώρηµα 2.11. Για κάθε δένδρο T υπάρχει IMC στρατηγική έρευνας S που το 

καθαρίζει  στο παιχνίδι ακµών µε ( )ic

Es T  ερευνητές. Επιπλέον, στην S όλοι οι 

ερευνητές τοποθετούνται αρχικά στον ίδιο κόµβο 0u  (δηλαδή η στρατηγική έρευνας 

είναι ριζωµένη) και το πρώτο βήµα (αφού τοποθετηθούν οι ερευνητές) συντελεί σε 

καθαρισµό ακµής που εφάπτεται στον 0u . 

 

Πόρισµα 2.12. Για κάθε δέντρο ισχύει ( ) ( )ic imc

E Es s=T T . Υπάρχει µια ριζωµένη 

στρατηγική έρευνας που επιτυγχάνει αυτό το όριο. 

 

Το Θεώρηµα 2.11 µπορεί να αναπτυχθεί στην παρακάτω διαδοχή ανισοτήτων. 

 

 

Θεώρηµα 2.13. Για κάθε δένδρο T ισχύει. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2.i m im c ic mc imc

E E E E E E E E Es s s s s s s s s= = ≤ = = = = ≤ −T T T T T T T T T  

Επιπλέον, υπάρχουν δένδρα στα οποία η ανισότητα ( ) ( )m im

E Es s≤T T  είναι αυστηρή. 
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 Η Barriere παρουσιάζει στην [2] τον αλγόριθµο Search, ο οποίος υπολογίζει 

µια ελάχιστη ριζωµένη IMC στρατηγική έρευνας S που καθαρίζει, στο παιχνίδι 

ακµών, για οποιοδήποτε δένδρο Τ. Το επόµενο θεώρηµα δείχνει ότι η S είναι 

ελάχιστη IMC στρατηγική που καθαρίζει το δένδρο και για το παιχνίδι κόµβων.  

 

Θεώρηµα 2.14. Για κάθε δένδρο T η στρατηγική έρευνας που παράγεται από τον 

αλγόριθµο Search είναι: 

 

1. Ελάχιστη IMC ριζωµένη που καθαρίζει το T στο παιχνίδι ακµών. 

2. Ελάχιστη IMC ριζωµένη που καθαρίζει το T στο παιχνίδι κόµβων. 

 

Πόρισµα 2.15. Για κάθε δένδρο T ισχύει ( ) ( )imc imc

E Ns s=T T . 

 

Ο αλγόριθµος Search χρησιµοποιεί τον βοηθητικό αλγόριθµο Label που επίσης 

περιγράφετε στην [2]. Η Barriere χρησιµοποιεί τον αναδροµικό αλγόριθµο Label για 

να αποδώσει σε κάθε ακµή uv ενός δένδρου Τ µια βαθµολογία (η ακριβής µετάφραση 

του όρου είναι ετικέτα από το «λ-label») που εκφράζει τον αριθµό των ερευνητών 

που απαιτούνται για να καθαριστεί το υποδένδρο του Τ µε ρίζα τον κόµβο v. Με 

άλλα λόγια, η βαθµολογία κατά Barriere, όπως θα λέµε στο εξής, µας υποδεικνύει 

πόσοι ερευνητές χρειάζονται για να καθαριστεί το δένδρο, από τον κόµβο v και κάτω. 
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3.Αλγόριθµος GSST 
 

Σε αυτό το κεφάλαιο θα ασχοληθούµε µε τις IMC έρευνες κόµβων σε ένα 

τυχαίο γράφο ( , )V E=G (που υποθέτουµε πάντα ότι έχει Ν  κόµβους, δηλαδή |V| = 

N). Σε κάθε τέτοια έρευνα, η t-οστή κίνηση έχει την µορφή ( )t u v= →S , µε ,u v V∈  

ή πιθανώς, 0u = ο «πηγαίος» κόµβος . 

Θα παρουσιαστούν αρκετές εκδοχές του βασικού n-καθαριστικού αλγορίθµου. 

Όλες οι εκδοχές εγγυηµένα βρίσκουν µια καθαριστική στρατηγική έρευνας για το 

παιχνίδι κόµβων. Όπως αποδεικνύεται στην  [41], δύο από της εκδοχές βρίσκουν 

στρατηγική έρευνας µε τον ελάχιστο αριθµό ερευνητών µε πιθανότητα 1 Ma−  όπου 

(0,1)a∈  και Μ ο αριθµός των επαναλήψεων του αλγορίθµου. Ακόµα και µη 

ελάχιστές στρατηγικές, απαιτούν σχετικά µικρό αριθµό ερευνητών, όπως φάνηκε από 

τα πειράµατα στην [41]. Η ανάλυση και τα θεωρήµατα είναι παρµένα από την τεχνική 

έκθεση [41]. Οι αποδείξεις των θεωρηµάτων παραλείπονται. 

 

3.1 Κεντρική Ιδέα 

 

Η βασική ιδέα του αλγορίθµου είχε ως έναυσµα την σχετικά απλή παρατήρηση 

ότι κάθε ριζωµένη IMC n-καθαριστική στρατηγική έρευνας πάνω στον G κατασκευάζει 

ένα γεννητορικό δένδρο. Αυτή η παρατήρηση µπορεί να διατυπωθεί ως το θεώρηµα 

παρακάτω. 

 

Θεώρηµα 3.1 ∆εδοµένου ενός γράφου ( , )V E=G  και µιας ριζωµένης IMC n-

καθαριστικής στρατηγικής έρευνας S του G,οι καθαριστικές κινήσεις της S παράγουν 

µια ακολουθία δένδρων, ( )0 1 2, , ,...., NT T T T , για τα οποία (για 

1, 2,...,n N= ) ( ),n n nV E=T και ισχύουν τα παρακάτω: 

D1.  το 0T  είναι ο κενός γράφος ( 0 0,V E=∅ =∅ ). 

D2.  το NT  είναι ένα γεννητορικό δένδρο του G ( ,N NV V E E= ⊆ ). 

D3.  για 1, 2,...,n N= : 1n nV V− ⊆ , 1n nE E− ⊆  ( µε άλλα λόγια το 1n−T  είναι υποδένδρο 

του nT ). 

D4.  για 1, 2,...,n N= : { }1n n nV V u−= ∪ , και για 2,3,...n = : { }1n n i nE E u u−= ∪ , µε 

[ ]1, 1i n∈ − . 

 

 

Παρατήρηση 3.2 Μια συντοµότερη διατύπωση του Θεωρήµατος 5.1 θα µπορούσε να 

είναι η εξής: «Κάθε ριζωµένη IMC n-καθαριστική στρατηγική έρευνας του G καθορίζει 

ένα γεννητορικό δένδρο του G και µια διαδοχή καθαρισµού των κόµβων». Όµως η 

διαδοχή πρέπει να είναι σύµφωνη µε τη δοµή των ακµών το γράφου και το γεννητορικό 

δένδρο (π.χ. δεν µπορούµε να θεωρήσουµε µια διαδοχή καθαρισµού των κόµβων που 

απαιτεί ανύπαρκτες ακµές). Αυτό το σηµείο ακριβώς περιγράφεται από τις συνθήκες D3 

και D4.  
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Πόρισµα 3.3 ∆εδοµένου ενός γράφου ( , )V E=G , κάθε ελάχιστή IMC n-καθαριστική 

έρευνα S του G, παράγει µια ακολουθία δένδρων που ικανοποιούν τις συνθήκες του 

Θεωρήµατος 5.1. 

 

Το Θεώρηµα 3.1 και το Πόρισµα 3.3 οδηγούν στον αλγόριθµο GSST                  

( Guaranteed Search with Spanning Trees ), που περιγράφεται πρόχειρα παρακάτω σε 

ψευδογλώσσα. 

 
Αλγόριθµος 1 GSST, αρχική έκδοση 

Είσοδος: Γράφος G 

Επίλεξε ένα γεννητορικό δένδρο Τ του G και µια ρίζα 0u  του Τ 

Βρες µια ριζωµένη IMC n-καθαριστική στρατηγική έρευνας 'S  του Τ 

Εφάρµοσε την 'S  στον G 

ΑΝ σε κάποιο βήµα της 'S  η κίνηση u v→  προκαλεί επαναµόλυνση G ΤΟΤΕ 

στείλε ένα «φρουρό» στον u 

εκτέλεσε την u v→  

ΤΕΛΟΣ_ΑΝ 

Έξοδος: Η στρατηγική S ως συνδυασµός της 'S  µε τις κινήσεις των φρουρών 

 

Σηµειώστε ότι, εκ κατασκευής, όλες οι κινήσεις καθαρισµού γίνονται πάνω στις 

ακµές του γεννητορικού δένδρου Τ. 

Στην παραπάνω περιγραφή του αλγορίθµου χρησιµοποιείται ο όρος «φύλακας». 

Μπορούµε να πούµε άτυπα ότι οι ερευνητές µπορούν να έχουν δύο ρόλους: είτε είναι 

«ερευνητές του δένδρου» που εκτελούν τις καθαριστικές κινήσεις, πάντα πάνω στις 

ακµές του γεννητορικού δένδρου, είτε «φρουροί» που είναι στάσιµοι και φράσσουν 

πιθανές επαναµολύνσεις. Ωστόσο κάθε ερευνητής µπορεί να εναλλάσσει ρόλους κατά 

τη διάρκεια της έρευνας. 

Το κύριο πλεονέκτηµα του GSST αλγόριθµου είναι ότι είναι γρήγορος. Ένα 

τυχαίο γεννητορικό δένδρο Τ µπορεί να κατασκευαστεί και να ερευνηθεί πολύ 

γρήγορα. ∆εδοµένου ότι το Τ και ο G έχουν το ίδιο σύνολο κόµβων, ο n-καθαρισµός 

του Τ µε n-µονότονο τρόπο έχει ως αποτέλεσµα τον n-καθαρισµό και του G. Το κύριο 

ζήτηµα είναι: πόσοι φρουροί απαιτούνται για να αποφευχθεί η επαναµόλυνση µέσω 

των ακµών του G που δεν ανήκουν στο δένδρο; Ο αριθµός τους συνήθως προκύπτει 

σχετικά λογικός, καθώς (α) οι φρουροί µπορούν να ξαναχρησιµοποιηθούν και (β) οι 

ερευνητές του δένδρου γίνεται να χρησιµοποιηθούν και ως φρουροί όταν δεν 

εκτελούν καθαριστικές κινήσεις. 

 Και η φάση βαθµολόγησης κατά Barriere (των στοιχείων του γράφου) και η 

φάση διάσχισης του GSST µπορούν να εκτελεσθούν µε είτε µε συγκεντρωµένο µε 

διανεµηµένο τρόπο. Ο διανεµηµένος τρόπος είναι ιδανικός για ροµποτικές 

εφαρµογές, που κάθε ροµπότ µπορεί να αναλάβει ένα µέρος του υπολογιστικού 

φορτίου. Στη διανεµηµένη εκδοχή, όλοι οι ερευνητές έχουν κοινό γεννητορικό δένδρο 

και τις βαθµολογίες των στοιχείων. Όταν ένας ερευνητής φθάνει σε έναν κόµβο, 

ελέγχει εάν µπορεί να κινηθεί χωρίς επαναµόλυνση. Αν µπορεί, αποφασίζει την 

επόµενή του κίνηση βάσει της στρατηγικής διάσχισης και ενηµερώνει την υπόλοιπη 

οµάδα για την κίνηση αυτή. 

Συµπερασµατικά, ο GSST έχει µικρό χρόνο εκτέλεσης και µπορεί να τρέχει 

συνεχώς (σε λογικά πλαίσια χρόνου), χρησιµοποιώντας κάθε φορά διαφορετικά 

(τυχαία επιλεγµένα) γεννητορικά δένδρα. Ο αλγόριθµος βασίζεται στην γρήγορη 
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ανακάλυψη  κάποιου γεννητορικού δένδρου που θα οδηγήσει σε µία ελάχιστη, ή πολύ 

κοντά στην ελάχιστη (από άποψη αριθµού ερευνητών) στρατηγική έρευνας 

(Θεώρηµα 3.1). Τα πειράµατα που έγιναν στην [41] έδειξαν ότι ο GSST βρίσκει 

τέτοιου είδους στρατηγικές σε µικρό χρόνο εκτέλεσης για ένα πλήθος οικογενειών 

περίπλοκων γράφων. 

Ένα σηµαντικό χαρακτηριστικό του GSST είναι το ότι µπορεί να δώσει κάποια 

απάντηση σε οποιοδήποτε χρόνο εκτέλεσης. Η απάντηση βελτιώνεται όσο αυξάνεται 

ο χρόνος εκτέλεσης. 
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3.2.1 Παρουσίαση αλγορίθµου 

 

Μια λεπτοµερείς περιγραφή του αλγορίθµου GSST δίνεται στον παρακάτω 

ψευδοκώδικα. Ο συµβολισµός ( )| u v= →S S  σηµαίνει ότι η κίνηση ( )u v→  

προστίθεται στην αποθηκευµένη στρατηγική έρευνας S (δηλαδή γίνεται η επόµενη 

κίνηση της S). Οι υπορουτίνες που εµφανίζονται θα εξηγηθούν παρακάτω. 

 
Αλγόριθµος 2 GSST 

Είσοδοι: G: ο γράφος, M: ο αριθµός των δένδρων που θα χρησιµοποιηθούν. 

min =∅S  

mins = ∞  

ΓΙΑ m ΑΠΟ 1 ΕΩΣ Μ  

=∅S  

Τ = GenerateTree(G) 

Επίλεξε τυχαία τη ρίζα 0u  

( )0| 0 u= →S S  

0{ },C C

N NV u E= =∅  

0{ },D D

N NV V u E E= − =  

( , )C C C

N N NV E=G  

( )λ = −R Label T  

ΟΣΟ D

NV ≠ ∅  ΕΠΑΝΑΛΑΒΕ 

( , , , )C D

N Nuv E λ= SelectEdge G T  

ΑΝ κάποιος ερευνητής µπορεί να διαβεί την uv χωρίς επαναµόλυνση ΤΟΤΕ 

Μετακίνησε τον στο u µέσω του καθαρού γράφου 

| ( )u v= →S S  

{ }, { }C C

C N N CV V v E E uv= ∪ = ∪  

{ }, { }D D D D

N N N NV V v E E uv= − = −  

( , )C C C

N N NV E=G  

ΑΛΛΙΩΣ 

0| (0 )u= →S S  

ΤΕΛΟΣ_ΑΝ 

ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 

ΑΝ ( ) minsn s<S  ΤΟΤΕ  

min =S S  

( )mins sn= S  

ΤΕΛΟΣ_ΑΝ 

ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 

Έξοδος: n-καθαριστική στρατηγική έρευνας minS  
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Τα παρακάτω βήµατα εξηγούν τη λειτουργία του αλγορίθµου. 

 

1. Κατασκευή τυχαίου γεννητορικού δένδρου Τ µε την υπορουτίνα 

GenerateTree. Χρησιµοποιούνται δύο διαφορετικές µέθοδοι για την 

κατασκευή τυχαίου γεννητορικού δένδρου. 

 

(a) Η µέθοδος uniform που είναι µια υλοποίηση του αλγορίθµου loop 

erased random walk του Wilson [37]. 

 

(b) Η µέθοδος DFS (dept first) η οποία επιλέγει µια ρίζα και µε τυχαίο 

τρόπο διασχίζει κατά βάθος το δένδρο. Για κάθε κόµβο του 

γράφου, επιλέγετε τυχαία µια προσκείµενη ακµή και τοποθετείται 

στο γεννητορικό δένδρο. Υπάρχει µια λίστα που αποθηκεύονται οι 

κόµβοι που έχουµε επισκεφτεί και όταν ξαναβρεθούµε σε κάποιον 

κόµβο, η ακµή που µόλις διαβήκαµε σηµατοδοτείται ως ακµή 

εκτός του δένδρου. Με αυτόν τον τρόπο απαλείφονται οι κύκλοι 

του γράφου και έτσι κατασκευάζεται ένα δένδρο. Όταν ένα φύλλο 

ολοκληρωθεί, ο αλγόριθµος επαναλαµβάνεται για να βεβαιωθούµε 

ότι όλοι οι κόµβοι συµπεριλαµβάνονται στο δένδρο (µε άλλα λόγια 

ότι πρόκειται για γεννητορικό δένδρο του αρχικού γράφου). Το 

κίνητρο για τη χρήση αυτού του αλγορίθµου είναι η προσπάθεια να 

δηµιουργήσουµε δένδρα που απαιτούν όσο το δυνατό λιγότερους 

φρουρούς. Περιµένουµε ότι ο DFS διάσχιση θα παράγει λίγους 

κόµβους προσκείµενους σε ακµές εκτός του δένδρου και άρα 

λιγότερους απαιτούµενους φρουρούς. 

 

2. Βαθµολόγηση κατά Barriere των ακµών του Τ µε τον αλγόριθµο       

R-Label (µια ισοδύναµη, µη αναδροµική παραλλαγή του αλγορίθµου 

Label της Barriere [2], που µπορεί να βρεθεί στο Appendix Α της 

[41]). 

 

3. Ενώ n-βρώµικοι κόµβοι υπάρχουν ακόµα, επιλέγεται µια n-βρώµικη 

ακµή uv του Τ (µε τον SelectEdge). Κάποιος ερευνητής διασχίζει την 

uv αν δεν προκαλείται έτσι επαναµόλυνση κόµβων. Αν δεν είναι 

δυνατή µια τέτοια κίνηση, χρησιµοποιείται ένας καινούριος ερευνητής 

(που αρχικά τοποθετείται στην ρίζα) για να διασχίσει την uv. 

 

4. Η διαδικασία επαναλαµβάνεται µέχρι όλοι οι κόµβοι να γίνουν n-

καθαροί. (Εποµένως ο αλγόριθµος δεν επιτρέπει επαναµόλυνση 

κόµβων και θα εισάγει όσους ερευνητές χρειαστεί για να την 

αποτρέψει). 

 

5. Όταν όλοι οι κόµβοι έχουν n-καθαριστεί, έχει κατασκευαστεί µια 

ριζωµένη IMC στρατηγική καθαρισµού κόµβων η οποία πραγµατοποιεί 

όλες τις καθαριστικές τις κινήσεις κατά µήκος των ακµών του Τ. 

 

6. Επαναλαµβάνεται η διαδικασία από το βήµα 1 µε ένα νέο γεννητορικό 

δένδρο. 
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7. Όταν έχει ξεπεραστεί ο µέγιστος αριθµός των δένδρων (και άρα των 

αντίστοιχων στρατηγικών έρευνας), ο αλγόριθµος τερµατίζεται 

επιστρέφοντας την στρατηγική min
S  που χρησιµοποιεί mins  ερευνητές, 

την ελάχιστη τιµή του ( )sn S . 

 

 

Η υπορουτίνα SelectEdge επιλέγει µια n-βρώµικη ακµή uv που ανήκει στο Τ και 

ακουµπά στον µέχρι τώρα καθαρό γράφο 
C

NG . Υπάρχουν αρκετές µέθοδοι για αυτή 

την επιλογή. 

 

1. Labeled Selection (L). Η επόµενη ακµή uv που πρόκειται να 

διασχιστεί επιλέγεται σύµφωνα µε την λ βαθµολόγηση της κατά 

Barriere. Αν ωστόσο η συγκεκριµένη κίνηση προκαλεί επαναµόλυνση 

επιλέγεται η επόµενη κατά Barriere ακµή. Αν σε κάποιο βήµα της 

έρευνας η διάσχιση οποιασδήποτε ακµής του Τ θα προκαλούσε 

επαναµόλυνση (δηλαδή κανένας ερευνητής δεν µπορεί να κινηθεί), 

τότε εισάγουµε έναν νέο ερευνητή στην ρίζα. 

 

2. Labeled Selection with Randomized Tie-breaking (LR). Η επιλογή 

γίνεται µε τον ίδιο τρόπο εκτός του ότι οι κατά Barriere ισοβαθµίες 

των ακµών επιλύονται µε τυχαίο τρόπο. 

 

3. Randomized Selection (R). Η επιλογή της uv  γίνεται τυχαία (χωρίς 

τη χρήση της βαθµολόγησης κατά Barriere) µε οµοιόµορφη 

πιθανότητα για όλες τις n-βρώµικες ακµές που ανήκουν στο Τ και 

ακουµπούν στον 
C

NG : 

 

( )
c αν ο u είναι n-καθαρός και η uv είναι n-βρώµικη ακµή του 

Pr uv
0 αλλιώς.


= 


T;

 

 

4. Labeled Weighted Selection (LW). Ο τρόπος επιλογής είναι το 

ενδιάµεσο µεταξύ R και L: η επιλογή της ακµής εξακολουθεί να είναι 

τυχαία αλλά αντί για οµοιόµορφη κατανοµή πιθανοτήτων, η 

πιθανότητα κάθε ακµής είναι ανάλογη µε την λ  βαθµολόγησή της 

κατά Barriere. 

 

5. Label Dominated Selection (LD). Επιτυγχάνεται βαθµολογώντας τις 

ακµές που οδηγούν σε κοµµάτια του γράφου που αποτελούν δένδρα 

(υποδένδρα του γράφου).Κατά τη διάρκεια της έρευνας, διατηρείται 

µια λίστα µε τους ερευνητές που µπορούν να κινηθούν χωρίς να 

κινδυνεύουµε για επαναµόλυνση. Αν κάποια ακµή που εφάπτεται στο 

CV  οδηγεί σε ένα υποδένδρο του γράφου, και υπάρχουν αρκετοί 

ερευνητές ελεύθεροι, ο καθαρισµός αυτού του υποδένδρου µπορεί 

µόνο βελτιώσει τις στρατηγικές έρευνας. 
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Εφαρµόζοντας καθένα από τους παραπάνω κανόνες στον «βασικό» αλγόριθµο 

GSST, προκύπτουν δέκα παραλλαγές αυτού, οι: uniform GSST-L, uniform GSST-LR, 

... , uniform GSST-LD, DFS GSST-L, ..., DFS GSST-LD. Οι παραλλαγές αυτές 

(εκτός των δύο GSST-R) χρησιµοποιούν την βαθµολογία κατά Barriere, αλλά δεν 

παράγουν απαραίτητα διάσχιση του γεννητορικού δένδρου κατά Barriere. Κατά µια 

έννοια Από µία άποψη,η τυχαία επιλογή είναι ο απλούστερος ή πιό αφελής κανόνας 

που µπορεί να χρησιµοποιηθεί για να επιλεχθεί η επόµενη κίνηση της στρατηγικής 

έρευνας: κάθε n-βρώµικη ακµή του Τ   (που ακουµπά στον καθαρό γράφο) είναι 

εξίσου πιθανό να επιλεχτεί. Οι υπόλοιποι τρεις κανόνες µπορούν θεωρηθούν µέθοδοι 

να επηρεαστεί η πιθανότητα µε την οποία οι ακµές επιλέγονται, µε ουσιώδη τρόπο. Η 

αποτελεσµατικότητα αυτών των κανόνων εξετάστηκε από τα πειράµατα της [41].Από 

τη θεωρητική άποψη, ο uniform GSST-R και ο uniform GSST-LD βρίσκουν µια 

ελάχιστη στρατηγική καθαρισµού κόµβων µε πιθανότητα M1 α−  όπου Μ είναι ο 

αριθµός των επαναλήψεων και ( )0,1α ∈ (Θεώρηµα 3.10). Υποθέτουµε ότι αυτή η 

ιδιότητα δεν ισχύει για την επιλογή κατά Barriere. Πρακτικά, το θέµα είναι πόσο 

µεγάλο πρέπει να είναι το Μ  για να είναι το M1 α−  αρκετά κοντά στο 1. Εντούτοις, 

τα πειράµατα δείχνουν ότι οι παραπάνω κανόνες βρίσκουν καλές στρατηγικές 

καθαρισµού σε πολύ λογικό χρόνο. 

Παραλλαγές GSST µπορούν επίσης να παραχθούν µε την αντικατάσταση της 

υπορουτίνας GenerateTree µε µια εξαντλητική εξέταση όλων των γεννητορικών 

δένδρων του G (µπορεί να χρησιµοποιηθεί σε συνδυασµό µε οποιαδήποτε από τις 

παραλλαγές του SelectEdge). Για να γίνει αυτό χρησιµοποιήθηκε ο αλγόριθµος 

απαρίθµησης γεννητορικών δένδρων του Char [21]. Η εξαντλητική απαρίθµηση είναι 

εφικτή µόνο για τους σχετικά µικρούς γράφους. Τέλος, οι στρατηγικές έρευνας που 

παράγονται από κάθε παραλλαγή του GSST είναι IMC. Αυτό ισχύει για την έρευνα 

και στα Τ και στον G. Για την ακρίβεια, για να λειτουργήσει πάνω στον G, η 

στρατηγική έρευνας στα Τ πρέπει να είναι IMC. Με άλλα λόγια, καµία προφανής 

τροποποίηση του GSST δεν θα παράγει, π.χ. µια εσωτερική, συνδεδεµένη, µη-

µονότονη n-καθαριστική στρατηγική έρευνας του G. 

Κλείνοντας το κεφάλαιο, θα τονίσουµε ότι η βασική ιδέα του GSST είναι να 

εκτελεσθούν όλες οι καθαριστικές κινήσεις κατά µήκος των ακµών ενός γεννητορικού 

δένδρου. Αυτή η ιδέα εκµεταλλεύεται τα γεγονότα ότι (α) τα γεννητορικά δέντρα 

µπορούν και να παραχθούν και να ερευνηθούν γρήγορα και (β) η αποτροπή 

επαναµόλυνσης δεν απαιτεί υπερβολικά µεγάλο αριθµό φρουρών (επειδή ένας 

ερευνητής µπορεί να εναλλάσσει  ρόλους ως φρουρός και ερευνητής δέντρου). 
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3.2.2 Πληρότητα 

 

Ορισµός 3.4. ∆εδοµένου ενός γράφου G και µιας στρατηγικής έρευνας S του G, το 

σύνορο τη στιγµή t (υπό την S) είναι το 

( ) ( ) ( ){ }F C D

N N NV t u : u V t  και v : v V t ,uv E ,= ∈ ∃ ∈ ∈  

δηλαδή οι n-καθαροί κόµβοι που ενώνονται µε n-βρώµικους. 

 

Λήµµα 3.5. Σε µια έρευνα κόµβων, για κάθε t, οι κόµβοι ( )F

Nu V t∈  φυλάσσονται. 

 

Ορισµός 3.6. Θεωρούµε µία ριζωµένη IMC n-καθαριστική στρατηγική έρευνας S του 

G. Με 0t 0=  και θεωρώντας ότι οι καθαριστικές κινήσεις της S γίνονται τις στιγµές 

1 Nt ,...,t , µε 0t 0= .Ονοµάζουµε n-οστή φάση της S (για n 1,2,...,N= ) τη χρονική 

διάρκεια [ ]n 1 nt 1,t− + , δηλαδή το χρονικό διάστηµα µεταξύ της (n-1)-οστής και n-οστής 

καθαριστικής κίνησης 

 

Οι παρακάτω παρατηρήσεις είναι σχετικά προφανείς. Για m 2,3,...= , µια ακµή-

στόχος i mu u  (µε [ ]i 1,m 1∈ − ) αντιστοιχεί στην m-οστή φάση (εδώ θεωρούµε ότι η ρίζα 

είναι ο κόµβος 1u ). Καθώς [ ]m 1 mt t 1,t−∈ +  ο αλγόριθµος µετακινεί έναν ερευνητή προς 

την i mu u .Για [ ]m 1 mt t 1,t 1−∈ + − , η 
i mu u  είναι n-βρώµικη, ο iu  είναι n-καθαρός και ο mu  

είναι n-βρώµικος. Τη στιγµή mt t=  έχουµε ( )m i mt u u= →S  και οι i mu u  και mu  

καθίστανται  n-καθαρά.  

 

Λήµµα 3.7. ∆εδοµένου ενός γράφου ( )V ,E=G  και µιας ριζωµένης IMC στρατηγικής 

έρευνας S του G, αποτέλεσµα είτε του uniform GSST-R είτε του uniform GSST-LW, 

θεωρούµε ότι  1 2 Nt ,t ,...,t  είναι η στιγµές όπου γίνονται οι καθαριστικές κινήσεις. 

Επιπλέον 0t 0= . Τότε για n 2,...,N :=  

 

1. για [ ] ( ) ( )F F

n 1 n N N n 1t t ,t 1 :V t V t− −∈ − = . 

 

2. για [ ]n 1 nt t ,t 1−∈ − : όλοι οι ( )F

Nu V t∈  περιέχουν ακριβώς έναν ερευνητή 

εκτός έναν κόµβο, τον u( t ) , που πιθανώς περιέχει δύο ερευνητές.  

 

3. για nt t= : κάθε ( )F

N nu V t∈  περιέχει ακριβώς έναν ερευνητή. 

 

 

Λήµµα 3.8. ∆εδοµένου ενός γράφου ( )V ,E=G  και µιας ακολουθίας δένδρων 

( )0 1 N, ,...,T T T  που ικανοποιεί της συνθήκες D1-D4 του Θεωρήµατος 5.1, οι GSST-R 

και GSST-LW µε M = 1 (δηλαδή χρησιµοποιώντας ένα µόνο δένδρο) έχουν µη 

µηδενική πιθανότητα να κατασκευάσουν µια στρατηγική έρευνας S που παράγει την 

( )0 1 N, ,...,T T T . 
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Λήµµα 3.9. ∆εδοµένου ενός γράφου ( )V ,E=G  και µιας ριζωµένης IMC   n-

καθαριστικής στρατηγικής έρευνας S του G, θεωρούµε ότι η ( )0 1 N, ,...,T T T  είναι η 

ακολουθία δένδρων που παράγεται από την S. Αν η 'S  είναι µια στρατηγική που 

παρήχθη είτε από τον GSST-R είτε από τον GSST-LW η οποία παράγει και αυτή την 

ακολουθία ( )0 1 N
, ,...,T T T , τότε ( ) ( )sn sn '≥S S . 

 

Θεώρηµα 3.10. ∆εδοµένου ενός γράφου ( )V ,E=G . 

 

1. Ο GSST-R θα κατασκευάσει µια ελάχιστη ριζωµένη IMC n-καθαριστική 

στρατηγική έρευνας του G µε  πιθανότητα µεγαλύτερη ή ίση του M

11 α− , 

όπου Μ ο αριθµός των επαναλήψεων και ( )1 0,1α ∈ . 

 

2. Ο GSST-LR θα κατασκευάσει µια ελάχιστη ριζωµένη IM n-καθαριστική 

στρατηγική έρευνας του G µε  πιθανότητα µεγαλύτερη ή ίση του M

21 α− , 

όπου Μ ο αριθµός των επαναλήψεων και ( )2 0,1α ∈ . 

 

Θεώρηµα 3.11. ∆εδοµένου ενός γράφου ( )V ,E=G  και µιας IMC n-καθαριστικής 

στρατηγικής έρευνας S που χρησιµοποιεί Κ ερευνητές, υπάρχει µια e-καθαριστική 

στρατηγική έρευνας 'S η οποία χρησιµοποιεί είτε Κ είτε Κ + 1 ερευνητές. 

 

3.3 Συµπεράσµατα προηγούµενων πειραµάτων  

 

Στην [41]  πραγµατοποιήθηκε µεγάλος αριθµός πειραµάτων µε τον GSST στις 

διάφορες παραλλαγές του πάνω σε µια µεγάλη γκάµα γράφων διαφόρων µορφών. 

Στους περισσότερους περίπλοκους γράφους, ο GSST βρήκε µια ελάχιστη στρατηγική 

σε σχετικά καλό χρόνο. Σε όλους τους γράφους τουλάχιστον µια πολύ κοντινή στην 

ελάχιστη στρατηγική υπολογίστηκε στα αρχικά στάδια εκτέλεσης του αλγορίθµου. Η 

ικανότητα του GSST να δίνει µια µερική απάντηση σε οποιονδήποτε χρόνο, στην 

ουσία µεταφράζεται στο ότι µια πολύ καλή λύση δίνεται σε σύντοµο χρόνο και στο 

υπόλοιπο διάστηµα της εκτέλεσης, η λύση βελτιώνεται συνεχώς µε την πάροδο του 

χρόνου. 

Συγκρίνοντας τις δύο µεθόδους κατασκευής γεννητορικών δένδρων, 

παρατηρήθηκε ότι η DFS (κατά βάθος) είναι καλύτερη για όλους τους τύπους 

γράφων εκτός από τα πλέγµατα όπου υπερίσχυσε η uniform. Σχετικά µε τις µεθόδους 

διάσχισης των ακµών, δεν υπάρχει κάποια που ήταν συνεχώς καλύτερη (σε όλους 

τους τύπους γράφων). Ωστόσο ο GSST-L ποτέ δεν υστερεί στον αριθµό ερευνητών 

και είναι πάντα γρήγορος. Ο GSST-LR έχει τα ίδια πλεονεκτήµατα ενώ είναι 

ταυτόχρονα και αποδείξιµα πλήρης. 

Ο GSST είναι ο µόνος υλοποιηµένος αλγόριθµος που λύνει γράφους του 

µεγέθους και της πολυπλοκότητας αυτών των σχετικών πειραµάτων. 
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4.Αλγόριθµοι έρευνας ακµών 
 

Οι αλγόριθµοι έρευνας που αναπτύχθηκαν για το παιχνίδι ακµών είναι δύο: Ο 

Extra Nodes (EN) και ο Extra Searcher (ES). ∆εν πρόκειται, ουσιαστικά, για 

ανεξάρτητους αλγόριθµους καθώς οι λειτουργία και των δύο βασίζεται στον GSST. Ο 

Extra Nodes ουσιαστικά µετατρέπει το παιχνίδι ακµών σε παιχνίδι κόµβων 

χρησιµοποιώντας έναν ενδιάµεσο ψευδογράφο, ενώ ο Extra Searcher δρα προσθετικά 

στην n-καθαριστική στρατηγική έρευνας που προκύπτει από στον GSST εισάγοντας 

έναν ακόµα ερευνητή στο γράφο. 

4.1 Αλγόριθµος Extra Nodes 

 

Ο αλγόριθµος είναι ευριστικός και, όσες φορές εφαρµόστηκε, λειτούργησε 

κανονικά. Ωστόσο, δεν έχουµε αποδείξει ότι παράγει πάντα καθαριστικές έρευνες για 

το παιχνίδι ακµών.  

Όπως αναφέρθηκε ο Extra Nodes κάνει µια προεργασία στο γράφο, πριν δοθεί 

στον GSST, δηµιουργώντας έναν ψευδογράφο µε ενδιάµεσους κόµβους. Οι κόµβοι 

αυτοί τοποθετούνται στη µέση κάθε ακµής του γράφου.  

π.χ. αν ο αρχικός γράφος είναι ο  

 

 

 

 

 

 

 

 

 

 
Σχήµα 4.1: Αρχικός γράφος 

 
 ο ψευδογράφος του θα προκύψει. 

 
   

 

 

 

 

 

 

 

 

 

 

Σχήµα 4.2: Ο ψευδογράφος που προκύπτει από τον γράφο του Σχήµατος 4.1 . Με 

κόκκινο συµβολίζονται οι ενδιάµεσοι κόµβοι 
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Το δεύτερο στάδιο της διαδικασίας είναι η κατασκευή µιας n-καθαριστικής 

στρατηγικής S από τον GSST. Η S προφανώς περιέχει και τις κινήσεις των 

ερευνητών πάνω στους ενδιάµεσους κόµβους. 

Το τρίτο στάδιο είναι ο καθαρισµός της S από τις ενδιάµεσες κινήσεις ώστε να 

προκύψει η ζητούµενη 'S . Αυτό επιτυγχάνεται σε δύο βήµατα: 

 

1. Όλοι οι ενδιάµεσοι κόµβοι αντικαθιστούνται από τον κατάλληλο κάθε φορά 

(έναν από τους δύο) γειτονικό του. Για παράδειγµα, αν µεταξύ του κόµβου 1 και 

2 τοποθετηθεί ο ενδιάµεσος 11, στον παραπάνω γράφο, τότε η κίνηση 1 11→  

θα αντικατασταθεί από την 1 2→  ενώ η 2 11→  θα γινόταν 2 1→ . ∆ηλαδή οι 

ενδιάµεσοι κόµβοι αντικαθιστούνται από τον έτερο γειτονικό από αυτόν που 

ξεκινάει η κάθε κίνηση. Κινήσεις του τύπου 11 2→  δεν πρόκειται να µας 

απασχολήσουν διότι η αντικατάσταση γίνεται διαδοχικά στο χρόνο. Συνεπώς ο 

11 θα έχει ήδη αντικατασταθεί από τον 2 για όλα τα βήµατα µέχρι την 

επανεµφάνισή του. 

 

2. Έτσι από την αρχική διαδοχή  1 11→ ,11 2→  θα προκύψουν οι κινήσεις 

1 2→ , 2 2→ . Εποµένως όπως και περιµέναµε χρειάζονται τα µισά βήµατα 

στην 'S . Μετά το βήµα της αντικατάστασης λοιπόν, θα προκύψουν τα 

στιγµιότυπα των ενδιάµεσων κινήσεων, τα οποία θα είναι ίδια το καθένα µε το 

επόµενό του. Συνεπώς θα πρέπει να απαλλαγούµε από τα βήµατα της έρευνας 

που οι ερευνητές «παγώνουν» στις θέσεις τους. 

 

π.χ. οι κινήσεις.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Σχήµα 4.3: Κινήσεις που προέκυψαν από  την εφαρµογή του GSST πάνω στον 

ψευδογράφο. 
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θα γίνουν  

 
Σχήµα 4.4: Η µεταφορά των κινήσεων του Σχήµατος 4.3 στον αρχικό γράφο 

 

Τελικά καταλήγουµε µε την 'S  που είναι καθαριστική IMC στρατηγική για το 

παιχνίδι ακµών. 

 

4.2 Αλγόριθµος Extra Searcher  

4.2.1 Κεντρική Ιδέα 

 

Η κεντρική ιδέα του Extra Searcher πηγάζει από το Θεώρηµα 3.11 . Ο 

αλγόριθµος, εάν κριθεί απαραίτητο, εισάγει έναν ακόµα ερευνητή στο γράφο, τον 

καθαριστή ακµών, οποίος αναλαµβάνει να διατρέχει τις απαραίτητες e-βρώµικες 

ακµές ώστε σε µια n-καθαριστική έρευνα S να µην επαναµολύνεται ο γράφος ούτε 

για το παιχνίδι ακµών. Οι κινήσεις του λαµβάνουν χώρα ενδιάµεσα από τα βήµατα 

της S ελέγχοντας κάθε φορά αν η επόµενη κίνηση των αρχικών ερευνητών προκαλεί 

επαναµόλυνση. Στο τέλος της έρευνας ο καθαριστής ακµών διατρέχει όλες τις          

e-βρώµικες ακµές που πιθανώς υπάρχουν. Έτσι διασφαλίζεται η µονοτονία κατ’ 

αρχάς και η πληρότητα κατά δεύτερον του e-καθαρισµού του γράφου. Οι κινήσεις 

των αρχικών ερευνητών, καθώς και οι κινήσεις του καθαριστή ακµών, συνδυάζονται 

(µε τη σωστή διαδοχή) και έτσι προκύπτει η 'S  που είναι καθαριστική IMC 

στρατηγική για το παιχνίδι ακµών. 
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4.2.2 Παρουσίαση αλγορίθµου 

 

Θεωρούµε ότι στο n-οστό βήµα, µιας n-καθαριστικής µονότονης στρατηγικής 

fin1 2 nS [ S ,S ,...,S ]= , η κίνηση είναι n n nS ( u v )= →  και γίνεται από τον ερευνητή nσ . 

Ο συµβολισµός | p=S S  σηµαίνει ότι οι κινήσεις του καθαριστή ακµών, στο 

µονοπάτι p προστίθενται στην αποθηκευµένη στρατηγική έρευνας S. Η θέση z του 

καθαριστή ακµών είναι αρχικά εκτός του γράφου. Αν και όταν γίνει απαραίτητο, ο 

καθαριστής ακµών εισέρχεται στον γράφο µέσω της ρίζας. Η λειτουργία του 

αλγορίθµου περιγράφεται µε τον παρακάτω ψευδοκώδικα. 

 
Αλγόριθµος 3 Extra Searcher 

Είσοδος: ο γράφος G, στρατηγική έρευνας (n-καθαριστική) S  

n=1 ; 

m=1 ; 

S ′ =∅ ; 

ΟΣΟ finn n<  ΕΠΑΝΕΛΑΒΕ 

ΟΣΟ ο nσ  δεν είναι µόνος του στον nu  ΕΠΑΝAΛΑΒΕ 

n n 1= + ; 

m m 1= + ; 

m nS ' S= ; 

ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 

ΟΣΟ D

n 1 n 2 n i E{ u x ,u x ,...} : u x E ( n )∃ ∈  µε i n( x v )≠  ΕΠΑΝAΛΑΒΕ 

ο καθαριστής ακµών διατρέχει την κοντινότερη n iu x ; 

Αυτό γίνεται διαµέσου του συντοµότερου µονοπατιού p από τον z στο nu   

ή τον nv  µέσα στον e-καθαρό γράφο.* 

S ' S p' |= ; 

m m sizeof ( p )= + ; 

ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 

n n 1= + ; 

m m 1= + ; 

m nS ' S= ; 

ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 

ΟΣΟ D

1 2 i E fin{ e ,e ,...} : e E ( n )∃ ∈ ** ΕΠΑΝAΛΑΒΕ 

Ο καθαριστής ακµών διατρέχει την κοντινότερη ie  στην z διαµέσου του  

συντοµότερου µονοπατιού p  µέσα στον G;* 

ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 

Έξοδος: Η στρατηγική έρευνας 'S  που είναι e-καθαριστική και IMC. 

 

* Όπως θα δειχθεί παρακάτω, τέτοια µονοπάτια υπάρχουν πάντα 

** Όπως θα δειχθεί, µετά την
finnS , αν υπάρχουν ακµές C

i Ne E∈  θα είναι 

φυλασσόµενες  και από τις δύο µεριές. 
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Όπως θα φανεί από την µαθηµατική απόδειξη του αλγορίθµου, η µονοτονία του 

καθαρισµού στο παιχνίδι ακµών κινδυνεύει όταν αφήνεται µια e-βρώµικη ακµή 

αφύλακτη (από κάποιον παρακείµενο κόµβο) µέσα στον ως τώρα καθαρό γράφο. 

Εδώ, λέγοντας καθαρό γράφο εννοούµε τον καθαρό γράφο για το παιχνίδι ακµών (n-

καθαρός), ο οποίος, όταν χρησιµοποιείται ο καθαριστής ακµών, είναι ο e-καθαρός 
γράφος πλην των φυλασσόµενων e-βρώµικων ακµών, κάθε στιγµή. Όπως θα δειχθεί 

παρακάτω, το σύνολο των e-καθαρών κόµβων και ακµών θα σχηµατίσει πάντα έναν 

συνεκτικό γράφο, εποµένως µπορούµε να χρησιµοποιήσουµε τον όρο «e-καθαρός 

γράφος». 

Έτσι ο έλεγχος για την µονοτονία µετατίθεται στον έλεγχο για ύπαρξη τέτοιων 

n-καθαρών αλλά e-βρώµικων ακµών, που πρόκειται να αφεθούν αφύλακτες. Τέλος η 

λειτουργία του καθαριστή ακµών είναι ουσιαστικά να διατρέχει της  ακµές αυτές 

ακριβώς πριν αφεθούν αφύλακτες εµποδίζοντας έτσι την επαναµόλυνση και για το 

παιχνίδι ακµών πλέον. 
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4.2.3 Μαθηµατική Ανάλυση-Απόδειξη  

 

Ορισµός 4.1. Μια στρατηγική έρευνας για το παιχνίδι  ακµών σε έναν γράφο 

( )V ,E=G  ονοµάζεται µονότονη αν για κάθε 1 2t ,t  µε 1 2t t≤  ισχύει:  

 

( ) ( ) ( ) ( )2121 και   tEtEtVtV C

E

C

E

C

E

C

E ⊆⊆  

 

 

Θεώρηµα 4.2. Σε κάθε µονότονη στρατηγική έρευνας ακµών S, για κάθε t ισχύουν: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )ttutVu

ttutVu

tturvutEuv

ttuvvutEuv

C

E

D

E

C

E

D

E

′≤⇔′∈

′≤⇔′∈

′≤→→⇔′∈

′≤→→⇔′∈

 στο φορά µια άχιστονηφθεί τουλέχει καταλ  ο 

 στοηφθεί έχει καταλ δεν  ο 

 στο έχει γίνει   ή  

  στο γίνει έχουν δεν  ,

 

 
Απόδειξη. Θα αποδείξουµε την πρώτη πρόταση. Αν οι κινήσεις u v,v u→ → δεν 

έχουν γίνει στο t t′≤  είναι προφανές ότι ( )D

Euv E t∈  για κάθε t t′≤ . 

Υποθέτουµε ότι D

Euv E ( t )′∈  και u v→  τη στιγµή t ≤ t ′ . Θα δείξουµε ότι  

C

Et s t : uv E ( s )′∀ ≤ ≤ ∈  

 

το οποίο οδηγεί σε άτοπο. Εξ’ αιτίας της µονοτονίας, αρκεί να δείξουµε ότι 
C

Euv E ( t )∈ . Ας υποθέσουµε το αντίθετο. Αυτό σηµαίνει ότι, αφού ο uv διασχίστηκε 

αλλά πάλι σε χρόνο t, επαναµολύνθηκε. Αν ο u εξακολουθεί να φυλάσσεται στο t 

(περιείχε παραπάνω από έναν ερευνητές προηγουµένως), αυτό είναι αδύνατο καθώς 

και u και ο v φυλάσσονται ακόµα. Αν ο u είναι αφύλακτος, τότε υπάρχει αφύλακτο 

µονοπάτι από κάποια βρώµικη ακµή xy προς την uv. Εφόσον, όµως ο v είναι τώρα 

κατειληµµένος, έχουµε C

Eu V ( t 1)∈ −  και  D

Eu V ( t )∈ , το οποίο παραβιάζει την 

µονοτονία. 

Οι υπόλοιπες προτάσεις αποδεικνύονται µε ανάλογο τρόπο. 

 
Λήµµα 4.3. Σε µια µονότονη στρατηγική έρευνας ακµών, για κάθε t, 

D C

E Ne E ( t ) E ( t )∈ ∩ ⇒  η e φυλάσσεται στο t και από τις δυο µεριές. 

 

Απόδειξη: Ας υποθέσουµε ότι µια ακµή ie  γίνεται n-καθαρή, για πρώτη φορά,; τη 

στιγµή at . Σύµφωνα µε το Θεώρηµα 4.2 το γεγονός ότι D

i E ae E ( t )∈  σηµαίνει ότι η ie  

δεν έχει διατρεχθεί στο at t≤ . Αλλά υπάρχουν µόνο δυο τρόποι για µια ακµή να 

καταστεί n-καθαρή. Είτε να διατρεχθεί, είτε κάποια στιγµή να φυλάσσεται 

ταυτόχρονα και από τις δύο µεριές. Εποµένως, αν η at  είναι η πρώτη στιγµή που 
C

i Ne E∈  ξέρουµε ότι απαραίτητα φυλάσσεται και από τις δύο µεριές. Αλλά δεν είναι 

δυνατό κάποιος εφαπτόµενος κόµβος να αφεθεί αφύλακτος πριν η ie  διατρεχθεί, 

καθώς πρόκειται για µονότονη στρατηγική έρευνας ακµών και άρα οι εφαπτόµενοι 
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κόµβοι δεν µπορούν να επαναµολυνθούν από την ie . Έτσι, για να µετακινηθούν οι 

φρουροί είναι προφανές ότι πρέπει η ie  να διατρεχθεί, π.χ. σε χρόνο at t′ > , και 
C

i Ee E ( t ) t t′∈ ∀ ≥ . Τα παραπάνω µας οδηγούν στο ότι αν η ie  γίνει n-καθαρή χωρίς να 

έχει διατρεχθεί, θα παραµείνει φυλασσόµενη ωσότου C

i Ee E∈  (δηλαδή να διατρεχθεί), 

σε µια µονότονη στρατηγική έρευνας ακµών. 

 
Θεώρηµα 4.4. Για τον αλγόριθµο Extra Searcher ισχύουν: 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

C C C C

1 2 fin 1 2 E 1 E 2 E 1 E 2

C C

fin N E

C C

fin E 1 k 1 k E

t ,t [0,T ]   µε  t t : V t V t ,E t E t

t [0,T ] : V t V t

t [0,T ] : x, y V t ( x y )  µονοπάτι xz ...z y : { xz ,..., z y } E t

∀ ∈ ≤ ⊆ ⊆

∀ ∈ =

∀ ∈ ∀ ∈ ≠ ∃ ∈

 

 

Απόδειξη: Θα αποδείξουµε µε επαγωγή της παρακάτω προτάσεις για κάθε βήµα 

n N∈  της αρχικής έρευνας S, θεωρώντας ότι οι κινήσεις του καθαριστή ακµών 

λαµβάνουν χώρα σε χρόνους n h,n 2h,...,n kh n 1+ + + < + . 

 

( ) [ ] ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

C C C C

1 2 1 2 E 1 E 2 E 1 E 2

C C

N E

C C

E 1 k 1 k E

P n : t ,t n,n 1   µε t t : V t V t ,E t E t ,

Q n : t [ n,n 1] : V t V t

R( n ) : t [ n,n 1] : x, y V t  µονοπάτι xz ...z y : { xz ,...,z y } E t

∀ ∈ + ≤ ⊆ ⊆

∀ ∈ + =

∀ ∈ + ∀ ∈ ∃ ∈

 

 

 

Για n = 0 

 
C C C C

E N E N

C C C C

E N E N

t [0,1) : V ( t ) V ( t )   και E ( t ) E ( t )

V (1) V ( 1) r  (η ρίζα ) E (1) E ( 1)και

∀ ∈ = =∅ = =∅

= = = =∅
 

 

Άρα προφανώς  

 

( ) ( ) ( ) ( )
( ) ( )

C C C C

E 1 E 2 E 1 E 2 1 2

C C

N E

V t V t ,E t E t t ,t [0,1]

V t V t t [ n,n 1]

⊆ ⊆ ∀ ∈

= ∀ ∈ +
 

 

Εποµένως οι ( ) ( )P 0 ,Q 0  και R(0 )  ισχύουν. 

 

Υποθέτουµε ότι οι ( ) ( )P m ,Q m ,R( m )  ισχύουν για όλα τα [ ]m 0,n 1∈ − . Ας 

εξετάσουµε την περίπτωση όπου m n= , µε finn n< , θεωρώντας ότι στην έρευνα 

κόµβων S και σε χρόνο t n 1= +  γίνεται η κίνηση ( ) ( )S n 1 u v+ = → . Εξετάζουµε τις 

παρακάτω περιπτώσεις. 

 

Περίπτωση I Η ( ) ( )S n 1 u v+ = →  δεν είναι n-καθαριστική κίνηση και στο t n=  ο 

κόµβος u περιέχει έναν ακριβώς ερευνητή. 
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Περίπτωση I.1  Υποθέτουµε ότι δεν υπάρχουν e-βρώµικες ακµές που ακουµπούν στον 

u (εκτός ίσως της uv). Ο καθαριστής ακµών δεν παρεµβαίνει στην έρευνα. Τότε  

 
C C

E N

C C

E N 1 2

C

N 1 2

V ( n ) V ( n )

E ( n ) E ( n ) { e ,e ,...} ή

E ( n ) { uv,e ,e ,...}

=

= −

= −

 

 

όπου 1 2e ,e ,... είναι οι φυλασσόµενες e-βρώµικες ακµές, µέσα στον καθαρό γράφο, οι 

οποίες δεν ακουµπούν στον u. Στο εξής ο συµβολισµός 1 2e ,e ,... θα αναφέρεται σε 

αυτές τις ακµές. Έπειτα έχουµε  

 
C C C C

E N N E

C C C

E N 1 2 E

V ( n 1) V ( n 1) V ( n ) V ( n )

E ( n 1) E ( n ) { e ,e ,...} E ( n ) { uv }

+ = + = =

+ = − = ∪
 

 

Άρα οι ( ) ( )P n ,Q n  και R( n )  ισχύουν. 

 

 
Σχήµα 4.5: Απεικόνιση της Περίπτωσης I.1 

 

Περίπτωση I.2 Υποθέτουµε ότι υπάρχουν e-βρώµικες ακµές 1 2ux ,ux ,... που 

ακουµπούν στον u, διαφορετικές από την uv (δηλαδή { }1 2v x ,x ,...∉ ). Πρέπει 

C C

i N Ex V ( n ) V ( n )∈ =  διότι διαφορετικά ο ερευνητής στον u δεν θα µπορούσε να 

κινηθεί στην αρχική IMC έρευνα κόµβων. Συνεπώς από το Λήµµα 4.3, οι ix  πρέπει 

να φυλάσσονται στο t n=  από ερευνητές της αρχικής έρευνας (όχι από τον 

καθαριστή ακµών). Στο εξής ο συµβολισµός 1 2ux ,ux ,... θα αναφέρεται σε αυτές τις 

ακµές. Τότε  

 
C C

E N

C C

E N 1 2 1 2

C

N 1 2 1 2 i

V ( n ) V ( n )

E ( n ) E ( n ) { e ,e ,...} { ux ,ux ,...}  ή 

E ( n ) { e ,e ,...} { uv,ux ,ux ,...} µε ( x v )

=

= − −

= − − ≠

 

 

Ο καθαριστής ακµών διατρέχει όλες τις iux  µε κινήσεις του τύπου iu x→  ή ix u→ . 

Ο καθαριστής ακµών φτάνει στον u ή στον κάθε ix  διαµέσου µόνο e-καθαρών ακµών 

και κόµβων. 
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Σχήµα 4.6: Απεικόνιση της Περίπτωσης I.2 

 

Σύµφωνα µε την R( n 1)−  θα υπάρχει πάντα τέτοιο µονοπάτι , άρα το σύνολο C

EV ( t ) , 

που συµπίπτει µε το C

NV ( t ) , παραµένει το ίδιο για κάθε t [ n,n 1)∈ + . Επίσης , όλες 

οι iux  παραµένουν φυλασσόµενες εκατέρωθεν µέχρι την επόµενη κίνηση της αρχικής 

έρευνας, έτσι γίνουν e-καθαρές (διατρεχθούν), δεν επαναµολυνονται στο [ n,n 1)+ . 

Τότε  

 
C C C

E N N

C C

E N 1 2

C

N 1 2

V ( n 1 ) V ( n 1 ) V ( n )

E ( n 1 ) E ( n ) { e ,e ,...} ή 

E ( n ) { uv,e ,e ,...}

− −

−

+ = + =

+ = −

= −

 

 

 
Σχήµα 4.7: Απεικόνιση της Περίπτωσης I.2 

 

Και τέλος 

 
C C C C

E N N E

C C C

E N 1 2 E 1 2

V ( n 1) V ( n 1) V ( n ) V ( n )

E ( n 1) E ( n ) { e ,e ,...} E ( n ) { uv,ux ,ux ,...}

+ = + = =

+ = − = ∪
 

 

Άρα οι ( ) ( )P n ,Q n  και R( n )  ισχύουν. 

 

Περίπτωση II Η ( ) ( )S n 1 u v+ = →  δεν είναι n-καθαριστική κίνηση και στο t n=  ο 

κόµβος u περιέχει παραπάνω από έναν ερευνητές. Ο καθαριστής ακµών δεν 

παρεµβαίνει στην έρευνα. Τότε  
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C C

E N

C

N 1 2

C

N 1 2

C

E

C

N 1 2 1 2

C

N 1 2 1 2

V ( n ) V ( n )

E ( n ) { e ,e ,...}

ή 

E ( n ) { uv,e ,e ,...}

E ( n ) ή 

E ( n ) { e ,e ,...} { ux ,ux ,...}

ή 

E ( n ) { e ,e ,...} { uv,ux ,ux ,...}

=

 −


 −


 − −

 − −

 

Και 

 
C C C

E N E

C C C

E N 1 2 E

C C

N 1 2 1 2 E

V ( n 1) V ( n ) V ( n )

E ( n 1) E ( n ) { e ,e ,...} E ( n ) { uv }  ή 

E ( n ) { e ,e ,...} { ux ,ux ,...} E ( n ) { uv }

+ = =

+ = − = ∪

= − − = ∪

 

 

Άρα οι ( ) ( )P n ,Q n  και R( n )  ισχύουν. 

 
Σχήµα 4.8: Απεικόνιση της Περίπτωσης II 

 

Περίπτωση III Η ( ) ( )S n 1 u v+ = →  είναι n-καθαριστική κίνηση και στο t n=  ο 

κόµβος u περιέχει ακριβώς έναν ερευνητή. 

 

Περίπτωση III.1 Υποθέτουµε ότι ο u είναι γείτονας µε παραπάνω από έναν e-

βρώµικους κόµβους. Φυσικά ο ένας από αυτούς θα είναι ο v. Αλλά η περίπτωση είναι 

αδύνατη, γιατί τότε η S, η αρχική έρευνα (για το παιχνίδι ακµών), δεν θα ήταν 

µονότονη, καθώς ο u θα ξαναγινόταν n-βρώµικος αµέσως µετά την κίνηση. 
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Σχήµα 4.9: Απεικόνιση της Περίπτωσης III.1 

 

 

Περίπτωση III.2 Υποθέτουµε ότι ο u είναι γείτονας µε ακριβώς έναν e-βρώµικο 

κόµβο, τον v. Επιπλέον ότι ο v είναι και αυτός γείτονας µε ακριβώς έναν e-καθαρό 

κόµβο, τον u. 

 

Περίπτωση III.2.i Θεωρούµε ότι η µόνη e-βρώµικη ακµή προσκείµενη στον u είναι η 

uv. Ο καθαριστής ακµών δεν παρεµβαίνει στην έρευνα. Τότε  

 
C C

E N

C C

E N 1 2

V ( n ) V ( n )

E ( n ) E ( n ) { e ,e ,...}

=

= −
 

 

Και  

 
C C C

E N E

C C C

E N 1 2 E

V ( n 1) V ( n 1) V ( n ) { v }

E ( n 1) E ( n ) { uv } { e ,e ,...} E ( n ) { uv }

+ = + = ∪

+ = ∪ − = ∪
 

 

 
Σχήµα 4.10: Απεικόνιση της Περίπτωσης III.2.i 

 

Άρα οι ( )P n και Q( n )  ισχύουν. Επίσης, αφού η R( n 1)−  ισχύει και C

Euv E ( n )∈ , µε 

C C

E EV ( n 1) V ( n ) { v }+ = ∪ , υπάρχει µονοπάτι προς τον v διαµέσου του uv. Εποµένως 

και η R( n ) ισχύει. 
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Περίπτωση III.2.ii Θεωρούµε ότι η υπάρχουν και άλλες e-βρώµικες ακµές 

προσκείµενες στον u, οι 1 2ux ,ux ,... µε ix v≠  και C

i Ex V ( n )∈ . Τότε 

 
C C

E N

C C

E N 1 2 1 2

V ( n ) V ( n )

E ( n ) E ( n ) { e ,e ,...} { ux ,ux ,...}

=

= − −
 

 

 

Ο καθαριστής ακµών διατρέχει όλες τις iux  µε κινήσεις του τύπου iu x→  ή ix u→  

ωσότου  

 
C C C

E N N

C C

E N 1 2

V ( n 1 ) V ( n 1 ) V ( n )

E ( n 1 ) E ( n ) { e ,e ,...}

− −

−

+ = + =

+ = −
 

 

Και τελικά 

 
C C C

E N E

C C C

E N 1 2 E 1 2

V ( n 1) V ( n 1) V ( n ) { v }

E ( n 1) E ( n ) { uv } { e ,e ,...} E ( n ) { uv,ux ,ux ,...}

+ = + = ∪

+ = ∪ − = ∪
 

 

 
Σχήµα 4.11: Απεικόνιση της Περίπτωσης III.2.ii 

 

Άρα οι ( ) ( )P n ,Q n  και R( n )  ισχύουν. 

 

Περίπτωση III.3 Υποθέτουµε πάλι ότι ο u είναι γείτονας µε ακριβώς έναν e-βρώµικο 

κόµβο, τον v, αλλά ο v είναι γείτονας παραπάνω από έναν e-καθαρούς κόµβους. Αυτή 

η περίπτωση όµως είναι ίδια µε την III.2. ∆ηλαδή, οι εξισώσεις παραµένουν ίδιες, 

δεδοµένου ότι αυτοί οι κόµβοι θα πρέπει να είναι αναγκαστικά φυλασσόµενοι. 

 

 
Σχήµα 4.12: Απεικόνιση της Περίπτωσης III.3 
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Περίπτωση IV Η ( ) ( )S n 1 u v+ = →  είναι n-καθαριστική κίνηση και στο t n=  ο 

κόµβος u περιέχει παραπάνω από έναν ερευνητές. Ο καθαριστής ακµών δεν 

ενεργοποιείται. Τότε  

 
C C

E N

C C

E N 1 2

C

N 1 2 1 2

V ( n ) V ( n )

E ( n ) E ( n ) { e ,e ,...} ή

E ( n ) { e ,e ,...} { ux ,ux ,...}

=

= −

= − −

 

 

 
Σχήµα 4.13: Απεικόνιση της Περίπτωσης IV 

 

Και  

 
C C C C

E N N E

C C C

E N 1 2 E

C C

N 1 2 1 2 E

V ( n 1) V ( n 1) V ( n ) { v } V ( n ) { v }

E ( n 1) E ( n ) { uv } { e ,e ,...} E ( n ) { uv } ή 

E ( n ) { uv } { e ,e ,...} { ux ,ux ,...} E ( n ) { uv }

+ = + = ∪ = ∪

+ = ∪ − = ∪

= ∪ − − = ∪

 

 

 
Σχήµα 4.14: Απεικόνιση της Περίπτωσης IV 

 

 

Άρα οι ( ) ( )P n ,Q n  και R( n )  ισχύουν. 

Επαγωγικά οι ( ) ( )P n ,Q n  και R( n )  για όλες τις κινήσεις της αρχικής έρευνας. 

 

Παρατήρηση 4.5. Ως συνέπεια της R( n ) , τα σύνολα C

EV ( t )  και EE
Ct  πάντα 

σχηµατίζουν ένα συνεκτικό γράφο C

EG ( t ) . 
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Θεώρηµα 4.6. Ο αλγόριθµος Extra Searcher, µετά και το τελευταίο πέρασµα του 

καθαριστή ακµών έχει ως αποτέλεσµα 

 
C

EG G=  

 

Απόδειξη: Σύµφωνα µε το προηγούµενο θεώρηµα  

 
C C

E fin N fin

C C

E fin N fin 1 2 1 2

V ( n ) V ( n ) V( G )

E ( n ) E ( n ) { e ,e ,...} V( G ) { e ,e ,...}

= =

= − = −
 

 

Στη συνέχεια ο καθαριστής ακµών ξεκινά να διασχίζει τις 1 2e ,e ,... µία προς µία, µέσω 

του συντοµότερου µονοπατιού κάθε φορά. Προφανώς αυτές οι ακµές είναι συνεχώς 

φυλασσόµενες εκατέρωθεν, από ερευνητές εκτός του καθαριστή ακµών. Ας 

θεωρήσουµε ότι αυτές οι κινήσεις γίνονται σε k βήµατα, που χρειάζονται dt = h το 

καθένα. Τότε  

 
C C

E fin N fin

C C C

E fin E fin 1 2 N fin

V ( n kh ) V ( n kh ) V( G )

E ( n kh ) E ( n ) { e ,e ,...} E ( n ) E( G )

+ = + =

+ = ∪ = =
 

 

Άρα C

E finG ( n kh ) G+ = . 
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5.Περιγραφή λογισµικού 

5.1 Εργαλεία γραµµής εντολών 

5.1.1 Gsearch.exe 

 

Το gsearch αναπτύχθηκε από τον Geoffrey Hollinger για την πειραµατική 

έρευνα της δηµοσίευσης [41] και αποτελεί την υλοποίηση του αλγορίθµου GSST 

στην γλώσσα C. 

∆έχεται ως ορίσµατα τα εξής δεδοµένα: 

1. (-m) Το αρχείο που περιγράφει το γράφο. Είναι ένα απλό αρχείο κειµένου στο 

οποίο καταγράφονται οι ακµές του γράφου. Κάθε σειρά στο κείµενο 

αντιστοιχεί σε µια ακµή και περιέχει τους δύο κόµβους που ενώνει αυτή. Για 

παράδειγµα η ακµή {1 2} καταγράφεται ως  1     2  . 

2. (-n) Τον αριθµό των γεννητορικών δέντρων που θέλουµε να αναπτυχθούν. 

3. (-s) Τον κόµβο που θα θεωρηθεί ρίζα της έρευνας (µε 0 θα έχουµε τυχαία 

επιλογή) 

4. (-g) Τη µέθοδο ανάπτυξης των γεννητορικών δένδρων (όπως αναφέρονται στο 

κεφάλαιο 4.1.2). 

5. (-y) Αν θα αποθηκεύσουµε µία, όλες ή καµία βέλτιστη στρατηγική έρευνας, 

από άποψη αριθµού ερευνητών. (∆είτε στις εξόδους για τη δοµή των αρχείων 

στρατηγικής) 

6. (-w) Αν θα αποθηκεύσουµε ένα, όλα ή κανένα γεννητορικό δέντρο που 

παράγει βέλτιστη στρατηγική. (∆είτε στις εξόδους για τη δοµή των 

γεννητορικών δένδρων) 

7. (-t) Τη µέθοδο που θα σπάνε οι δεσµοί των ακµών. 

8. (-i) Αν θα βελτιστοποιούνται τα γεννητορικά δέντρα. (Η επιλογή αυτή συχνά 

προκαλεί προβλήµατα στη µνήµη) 

9. (-r) Αν θα ελέγχεται η επικάλυψη των γεννητορικών δέντρων που παράγονται. 

∆ηλαδή αν κάποιο συγκεκριµένο δένδρο παραχθεί παραπάνω από µία φορές, 

θα εντοπισθεί από το πρόγραµµα και δεν θα ξαναεξεταστεί. 

10. (-l) Ο επιθυµητός ελάχιστος αριθµός ερευνητών. Αν βρεθεί µια στρατηγική µε 

αυτόν τον αριθµό η έρευνα σταµατά ( η προκαθορισµένη τιµή είναι 0 ώστε να 

διεκπεραιώνεται  πλήρως η έρευνα ). 

 

Οι έξοδοι του προγράµµατος είναι: 

� τα αρχεία ./output/strat*.txt, όπου * ο αριθµός της αντίστοιχης 

βέλτιστης στρατηγικής, από άποψη αριθµού ερευνητών. Σε κάθε 

γραµµή του αρχείου καταγράφεται είτε ο αριθµός που αντιστοιχεί σε 

κάποιον κόµβο είτε ο το -1. Οι αριθµοί των κόµβων υποδεικνύουν την 

παρουσία ερευνητή στον αντίστοιχο κόµβο. Όταν εµφανίζεται το -1 

σηµαίνει  ότι η έρευνα προχωρά κατά ένα βήµα. 

� τα αρχεία ./output/tree*.txt, όπου * ο αριθµός του αντίστοιχου 

βέλτιστου γεννητορικού δένδρου. Τα αρχεία αυτά σε κάθε σειρά 

αποθηκεύουν µια γονική σχέση µεταξύ κόµβων στο εκάστοτε δένδρο. 

∆ηλαδή η σειρά 2   4  θα σήµαινε ότι ο κόµβος 2 είναι γονέας του 4. Η 

ρίζα δηλώνεται πάντα στην πρώτη σειρά ως απόγονος της αφετηρίας 

0. Έτσι µπορούµε να κατασκευάσουµε το αποθηκευµένο γεννητορικό 

δένδρο. 
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� το αρχείο ./output/count.txt που καταγράφει τα δένδρα που εµφανίζουν 

κάθε φορά µικρότερο αριθµό ερευνητών από το µέχρι τώρα ελάχιστο, 

καθώς και τον αριθµό που αντιστοιχεί σε αυτά. Κάθε φορά που 

εντοπίζεται ένας νέος ελάχιστος αριθµός ερευνητών, συµπληρώνεται 

µια νέα σειρά µε αυτά τα στοιχεία. 

� το αρχείο ./output/results.txt που αναφέρει τον ελάχιστο αριθµό 

ερευνητών που εντοπίστηκε καθώς και το χρόνο εκτέλεσης του 

προγράµµατος. 

� εκτύπωση στην κονσόλα της προόδου της έρευνας. 

 

Το gsearch έχει µεταγλωττιστεί και για λειτουργικό linux µε πρόσθετη 

δυνατότητα για οπτικοποίηση της έρευνας. Η βοήθεια (στα αγγλικά) για την χρήση 

του προγράµµατος παρατίθεται παρακάτω. 

 
USAGE: gsearch -m [graph] -n [no.trees] -s [startnode] -g [gen.tree] 

                -y [wr-search] -w [wr-tree] -v [visualize] 

                -t [edge traversal], -i [improve tree] 

                -l [low number], -r [redundancy check] 

 

All arguments are optional EXCEPT -m. 

If an arg is omitted, the DEFAULT value is used. 

 

EXAMPLE: gsearch -m edge11.txt -n 100 -s 0 -t bh 

 

 

 

                      LIST OF ARGUMENTS 

                      ----------------- 

 

 

-m [graph]:        string, name of file with edge list of the graph. 

 

-n [no.trees]:     int, how many sp.trees to generate (DEFAULT is 1). 

 

-s [start node]:   int, which node to start (DEFAULT is 1, random 

                   choice is 0) 

 

-g [gen.tree]:     string, method of generating spanning trees 

                   (acceptable values: readtree, exhaustive, uniform,  

                   dfsrand; DEFAULT is uniform) 

 

-y [wr-search]:    string, how many best searches to write 

                   (acceptable values: one, all, none; DEFAULT is    

                   one) 

 

-w [wr-tree]:      string, how many best sp.trees to write 

                   (acceptable values: one, all, none; DEFAULT is  

                   one) 

 

-t [traversal]:    string, how to break edge label ties 

                   (acceptable values: bh, random, bhrand, bhweight,  

                   bhdom, bhdomweight; DEFAULT is bh) 

 

-i [improve tree]: boolean, use tree improvement technique or not. 

                   (acceptable values are 0 / 1; DEFAULT is 0, do not  

                   use it) 
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-r [redundancy check]: boolean, check for redundant trees 

(acceptable values are 0 / 1; DEFAULT 1, 

check for redundancy) 

 

-l [low number]:   break if a tree is found with this number of 

Searchers (DEFAULT is 0; do not break) 

 

-v [visualize]:   boolean, use visualizer (only supported on 

linux) (DEFAULT is 0, do not use) 

 

5.1.2 Eclear.exe 

 

Αναπτύξαµε το εργαλείο αυτό για την πειραµατική έρευνα της εργασίας αυτής 

σε γλώσσα C. Έχει τέσσερις λειτουργίες που προϋποθέτουν πάντα τη χρήση του σε 

συνδυασµό µε το gsearch.exe. ή κάποιου προγράµµατος που υλοποιεί αντίστοιχες 

έρευνες σε γράφους, µε την ίδια δοµή εισόδων και εξόδων: 

1. (-i) ∆έχεται ως όρισµα το αρχείο που περιγράφει τον γράφο (µε τις 

ακµές του) και εκτυπώνει στην κονσόλα το αρχείο ενός ίδιου γράφου µε 

ενδιάµεσους κόµβους. Αποτελεί ουσιαστικά την προεργασία του 

αλγορίθµου Extra Nodes. ∆ηµιουργεί τον βοηθητικό αυτό γράφο ώστε 

να δοθεί στον αλγόριθµο GSST (µέσω του gsearch.exe) για έρευνα. 

2. (-o) ∆έχεται ως ορίσµατα αρχείο που περιγράφει τον γράφο (µε τις 

ακµές του) και ένα αρχείο στρατηγικής (strat*.txt) που όµως περιέχει και 

ενδιάµεσους (ψεύτικους) κόµβους. Εκτυπώνει στην κονσόλα την 

στρατηγική έρευνας απαλλαγµένη από τους ψεύτικους κόµβους. 

Αποτελεί ουσιαστικά την επεξεργασία της εξόδου του gsearch.exe που 

έχει εφαρµοστεί σε βοηθητικό γράφο. 

 

Οι λειτουργίες 1 και 2 αποτελούν µαζί την υλοποίηση του αλγορίθµου Extra 

Nodes. Για παράδειγµα, η διαδοχή εντολών ενός τέτοιου πειράµατος θα 

ήταν: 
 
1.Eclear -i graphs\edge04.txt > FEdge.txt 

2.gsearch -m FEdge.txt -n 5000 -s 2 -g uniform -t bh  

3.Eclear -ο graphs\edge04.txt output\strat1.txt > 

realstrat.txt 

 

Όπου: 

� edge04.txt είναι το αρχείο που περιγράφει τον αρχικό γράφο (µε τις 

ακµές του). 

� FEdge.txt είναι το αρχείο που περιγράφει τον γράφο µε τους 

ενδιάµεσους κόµβους. 

� strat1.txt είναι το αρχείο στρατηγικής που παρήχθη από το 

gsearch.exe εφαρµοσµένο πάνω στο FEdge.txt. Εποµένως,περιέχει 

και ενδιάµεσους (ψεύτικους) κόµβους. 

� realstrat.txt είναι η στρατηγική καθαρισµένη από τους ψεύτικους 

κόµβους που καθαρίζει τον αρχικό γράφο στο παιχνίδι ακµών. 
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3.(-x) ∆έχεται ως ορίσµατα αρχείο που περιγράφει τον γράφο (µε τις ακµές 

του) και ένα αρχείο στρατηγικής (strat*.txt) που έχει παραχθεί από το 

gsearch.exe και άρα καθαρίζει τον γράφο στο παιχνίδι κόµβων. 

Εκτυπώνει στην κονσόλα µια στρατηγική καθαρισµού του γράφου στο 

παιχνίδι ακµών υλοποιώντας τον αλγόριθµο Extra Searcher. Για 

παράδειγµα, ένα σενάριο χρήσης της λειτουργίας αυτής: 

 
1.gsearch -m graphs\edge04.txt -n 5000 -s 2 -g uniform -t bh 

2.Eclear –x graphs\edge04.txt output\strat1.txt >      

  output\strat1.edge.txt 

 

Όπου: 

� edge04.txt είναι το αρχείο που περιγράφει τον γράφο (µε τις ακµές 

του). 

� strat1.txt είναι το αρχείο στρατηγικής που παρήχθη από το 

gsearch.exe εφαρµοσµένο πάνω στο edge04.txt. 

� strat1.edge.txt το αρχείο στρατηγικής που καθαρίζει τον γράφο στο 

παιχνίδι ακµών υλοποιώντας τον αλγόριθµο Extra Searcher. 

 

4.(-t) ∆έχεται ως ορίσµατα αρχείο που περιγράφει τον γράφο (µε τις ακµές 

του) και ένα αρχείο στρατηγικής (strat*.txt). Εκτυπώνει στην κονσόλα 

τη στρατηγική καθαρισµού χωρίς όµως άλµατα στις κινήσεις της. Η 

λειτουργία αυτή δεν αποτελεί µέρος υλοποίησης κάποιου αλγορίθµου. 

Κάνει µόνο χρήση της συνάρτησης καθαρισµού των αλµάτων, ώστε να 

µην γίνεται διακτίνιση των ερευνητών, για λόγους ευκολίας στην 

σύγκριση των διάφορων ερευνών.  

 

Οι στρατηγικές έρευνας που παράγονται από της λειτουργίες 2,3 και 4 είναι 

πάντα χωρίς άλµατα. Τέλος, κάθε φορά που χρησιµοποιούµε µία από αυτές, 

παράγεται ή συµπληρώνεται το αρχείο Eclear_oout.txt, Eclear_xout.txt ή 

Eclear_tout.txt µε τον αριθµό των ερευνητών της παραγόµενης στρατηγικής και τον 

χρόνο εκτέλεσης του Eclear.exe. Τα αρχεία αυτά αποθηκεύονται στο φάκελο από τον 

οποίο εκτελείται το Eclear. 

5.2 Η δυναµική βιβλιοθήκη plot.dll 

 

Η δυναµική βιβλιοθήκη plot.dll αναπτύχθηκε σε γλώσσα C και χρησιµοποιεί 

την βιβλιοθήκη γραφικών ανοιχτού κώδικα GD library (http://www.libgd.org). 

Περιέχει τις συναρτήσεις που οπτικοποιούν τους γράφους και τις στρατηγικές 

έρευνας δηλαδή τις plotgraph,plotnsearch και plotesearch. Η C επιλέχθηκε για πιο 

άµεση και ευέλικτη χρήση της βιβλιοθήκης γραφικών και οι συναρτήσεις 

αναπτύχθηκαν αποκλειστικά για τη χρήση τους από το γραφικό περιβάλλον 

(GsearchGUI.exe) που παρουσιάζεται στο Κεφάλαιο 5.3. 

 

 

5.2.1 Η συνάρτηση plotgraph 

 

Η συνάρτηση plotgraph έχει ως λειτουργία τη δηµιουργία αρχείου εικόνας 

(graph.jpg) που απεικονίζει τον γράφο που περιγράφεται από τα αρχεία edges.txt και 
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nodes.txt. Το πρώτο περιγράφει τον γράφο µε τις ακµές του (όπως ακριβώς στο 

gsearch και το Eclear) και το δεύτερο περιέχει τις συντεταγµένες των κόµβων του. Τα 

αρχεία εισόδου πρέπει να βρίσκονται στον ίδιο φάκελο µε το εκτελέσιµο, στον οποίο 

µάλιστα θα εµφανιστεί και το αρχείο εικόνας. 

 
Σχήµα 5.1:Παράδειγµα παραγόµενου αρχείου εικόνας από την plotgraph. 

 

5.2.2 Οι συναρτήσεις plotnsearch και plotesearch 

 

Οι συναρτήσεις αυτές αποτελούν την επέκταση της plotgraph στα βήµατα µιας 

στρατηγικής έρευνας. Η λειτουργία τους είναι όµοια µε αυτήν της plotgraph µε τη 

διαφορά ότι διαβάζουν και το αρχείο στρατηγικής ./output/strat1.txt και παράγουν 

πολλαπλές εικόνες στο φάκελο ./pix/ . Η µεταξύ διαφορά είναι ότι η µεν plotnsearch 

οπτικοποιεί το παιχνίδι κόµβων ενώ η plotesearch το παιχνίδι ακµών.  

Ενώ η plotgraph παράγει λευκούς κόµβους και µαύρες ακµές, οι παραπάνω 

συναρτήσεις χρησιµοποιούν έναν χρωµατικό κώδικα για να υποδηλώσουν την 

κατάσταση κάθε στοιχείου. 
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Σχήµα 5.2:Παράδειγµα εικόνας από την plotesearch. 

 

 

 

 

 

 
Σχήµα 5.3:Παράδειγµα της ίδιας εικόνας για το παιχνίδι κόµβων (plotnsearch). 
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Χρωµατικός κώδικας: 

 
� Ο καφέ κύκλος δείχνει τη ρίζα της εκάστοτε έρευνας 

� λευκά είναι τα στοιχεία (κόµβοι ή ακµές) που έχουν υπάρξει καθαρά 

τουλάχιστον µια φορά, µέχρι συγκεκριµένο στιγµιότυπο της έρευνας είτε 

για το παιχνίδι ακµών (plotesearch) είτε για το παιχνίδι κόµβων 

(plotnsearch) 

� γκρίζα είναι τα στοιχεία που δεν έχουν ποτέ καθαριστεί µέχρι το 

συγκεκριµένο στιγµιότυπο της έρευνας. 

� µε ανοικτό πράσινο χρωµατίζονται οι κόµβοι που περιέχουν έναν και 

µοναδικό ερευνητή στο συγκεκριµένο στιγµιότυπο της έρευνας. 

� µε σκούρο πράσινο χρωµατίζονται οι κόµβοι που περιέχουν πάνω από 

έναν ερευνητή στο συγκεκριµένο στιγµιότυπο της έρευνας. 

 

 

Παρατήρηση.Τα παραδείγµατα εικόνων αναφέρονται στην ίδια στρατηγική έρευνας, 

για τον ίδιο γράφο, στο ίδιο βήµα αλλά µε τη διαφορά στο είδος του παιχνιδιού. Έτσι 

ενώ στο παιχνίδι ακµών (plotesearch) η ακµή {4,6} είναι βρώµικη, την ίδια στιγµή 

στο παιχνίδι κόµβων (plotnsearch) θεωρείται καθαρή. 
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5.3 Γραφικό περιβάλλον GsearchGui.exe 

 

Το γραφικό περιβάλλον GsearchGUI.exe αναπτύχθηκε σε γλώσσα Visual Basic, 

µε την δυνατότητα κλήσης των gsearch.exe, eclear.exe και των συναρτήσεων του 

plot.dll . Τα διάφορα εκτελέσιµα που χρησιµοποιούνται από το GsearchGUI είναι τα 

εξής 

 

1. Τα εργαλεία-εντολές που προαναφέρθηκαν: 

� gsearch.exe 

� Eclear.exe 

2. To Autopics.exe, ένα δωρεάν (freeware) standalone πρόγραµµα 

προβολής εικόνων (http://www.mydesktophelp.com). Το autopics 

καλείται µετά τη χρήση των συναρτήσεων του plot.dll. 

3.  Το kill.exe ένα πρόγραµµα για τη διακοπή των εντολών του gsearch και 

του Eclear. 

 

Η χρήση όλων αυτών των διαφορετικών εκτελέσιµων, αντί για την 

προγραµµατιστική ενσωµάτωση τους σε ένα, έγινε για διάφορους σκοπούς. 

Αρχικά, για τα gsearch και Eclear , δεν υπάρχει λόγος για τον 

επαναπρογραµµατισµό τους αφού έχουν ήδη αναπτυχθεί ως εργαλεία-

εντολές για τη διεξαγωγή πειραµάτων. Το kill.exe για τον λόγο ότι η Visual 

Basic δεν υποστηρίζει multithreading και έτσι εκµεταλλευόµαστε το 

multitasking του λειτουργικού συστήµατος. Τέλος το autopics είναι ένα 

στοιχείο έτοιµο για χρήση µε µικρό όγκο και για λόγους ευκολίας δεν έχει 

νόηµα η ανάπτυξή κάποιου αντίστοιχου από την αρχή. 
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5.3.1 Το Front end 

 
Το Front-end του προγράµµατος αποτελείται από 3 περιοχές. 

 

 
Σχήµα 5.4: Το Interface του GsearchGUI.exe . 

 

 

1.Η περιοχή των επιλογών. 

 

Αποτελείται από τα πεδία που αντιστοιχούν στα ορίσµατα του gsearch. 

 

 
Σχήµα 5.5: Περιοχή επιλογών του gsearch στο GsearchGUI. 

 

 

Αυτά έχουν είτε τη λειτουργία της επιλογής από µια προκαθορισµένη λίστα, 

είτε τη µορφή απλού κειµένου που όµως δέχεται µόνο αριθµούς όταν χρειάζεται 

(number of trees, starting node, low number break). Το πεδίο «Node File» δεν είναι 
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ουσιαστικά όρισµα του gsearch αλλά είναι απαραίτητο για την οπτικοποίηση του 

γράφου και της έρευνας (Vgraph, Vsearch). 

Τέλος τα πεδία επιλογής αρχείων παρέχουν τη δυνατότητα να πλοηγηθούµε στο 

αρχείο από το λειτουργικό, κλικάρωντας στο µικρό κουµπάκι δεξιά τους. 

 

 

 
 

Σχήµα 5.6: Επιλογές αρχείων περιγραφής γράφου στο GsearchGUI. 

 

 

2.Οι λειτουργίες του Eclear. 

 

 
 

Σχήµα 5.7: Περιοχή λειτουργιών του Eclear στο GsearchGUI. 

 

Επιλέγοντας το checkbox «Edge Clearing» ενεργοποιείται και η επιλογή ενός 

από τους δύο αλγορίθµους. Ουσιαστικά κάνοντας την παραπάνω επιλογή, δηλώνουµε 

εξ’ αρχής ότι θα εφαρµοστεί κάποιος από τους δυο αλγορίθµους στην επικείµενη 

έρευνα. Σε αντίθετη περίπτωση  η έρευνα µας είναι απλή εφαρµογή του gsearch. 

Μπορούµε ωστόσο να την καθαρίσουµε από άλµατα, µε το κουµπί «Teleport clear» ή 

να εφαρµόσουµε των Extra Searcher µε το οµώνυµο κουµπί. Η εκ των υστέρων 

εφαρµογή του Extra Nodes είναι αδύνατη καθώς ο αλγόριθµος απαιτεί προεργασία 

στον γράφο-είσοδο του gsearch. 

 

3. Η περιοχή των εντολών 

 

Τα κουµπιά εντολών έχουν τις εξής λειτουργίες. 

 

� Το «Plot Graph» καλεί την συνάρτηση plotgraph από την βιβλιοθήκη plot.dll 

και έπειτα ανοίγει το πρόγραµµα Autopics στον φάκελο που βρίσκεται η  

εικόνα του γράφου. 

� Το «Search» εκτελεί το gsearch µε τις αντίστοιχες επιλογές που έχουν δοθεί 

από το χρήστη. Εάν έχουµε επιλέξει να γίνει καθαρισµός και στο παιχνίδι 

ακµών (τσεκάρωντας το «Edge clearing») τότε καλούνται και οι αντίστοιχες 

λειτουργίες του Eclear. 
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� Το «Plot Node Search» καλεί την συνάρτηση plotnsearch από την plot.dll και 

αφού δηµιουργηθούν οι εικόνες ανοίγει το πρόγραµµα Autopics στον φάκελο 

που βρίσκονται αυτές. 

� Το «Plot Edge Search» καλεί την συνάρτηση plotesearch από την plot.dll και 

αφού δηµιουργηθούν οι εικόνες ανοίγει το πρόγραµµα Autopics στον φάκελο 

που βρίσκονται αυτές. 

� Το «Help» µας παραπέµπει στο αρχείο βοήθειας του προγράµµατος. 

� Το «Exit» τερµατίζει την εφαρµογή. 

 

Τα κουµπιά αυτής της περιοχής έχουν όλα συντοµεύσεις πληκτρολογίου τα 

γράµµατα που είναι υπογραµµισµένα στο κείµενο του καθενός. Η εκτέλεση των 

λειτουργιών τους από το πληκτρολόγιο γίνεται µε το συνδυασµό Alt+<Key> ,όπου 

<Key>  το αντίστοιχο πλήκτρο συντόµευσης. 

Τέλος, καθώς εκτελείται η εντολή ή η ακολουθία εντολών του  

«Search» εµφανίζεται στην οθόνη το kill.exe το οποίο µας παρέχει ένα κουµπί για τη 

διακοπή κάθε εντολής. 

 

 
 

Σχήµα 5.8: Το kill.exe, σχεδιασµένο για να διακόπτει της λειτουργίες των 

gsearch.exe και Eclear.exe όταν είναι  αναγκαίο. 
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5.3.2 Σενάρια χρήσης. 

 

Η αρχική εικόνα του προγράµµατος είναι η παρακάτω. 

 

 
Σχήµα 5.9: Αρχική µορφή του GsearchGUI. 

 

Παρατηρούµε πως οι εντολές «Plot Node Search» και «Plot Edge Search» είναι 

αρχικά απενεργοποιηµένες καθώς δεν υπάρχει ακόµα καµία στρατηγική έρευνας. 

Επίσης η εντολές για επεξεργασία της έρευνας είναι ανενεργές για τον ίδιο λόγο. 

Τέλος η επιλογή κάποιου αλγορίθµου για καθαρισµό ακµών θα ενεργοποιηθεί µόνο 

εφόσον τσεκαριστεί το «Edge Clearing». Ας παρακολουθήσουµε δύο πιθανά σενάρια 

χρήσης του GsearchGUI. 

Αν για παράδειγµα  θέλουµε να εκτελέσουµε έρευνα στο παιχνίδι κόµβων 

πιθανή διαδοχή βηµάτων είναι η εξής: 

 

1.Επιλέγουµε τα αρχεία του γράφου. 

 

 
Σχήµα 5.10: Κουµπιά επιλογής αρχείων. 
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Σχήµα 5.11: ∆ιάλογος περιήγησης στο σύστηµα αρχείων. 

 

2.Εκτελούµε την εντολή «Plot Graph» είτε από το κουµπί είτε µε  

την συντόµευση πληκτρολογίου Alt+G.  

 

 
Σχήµα 5.12: Κουµπί εκτέλεσης της εντολής vgraph.exe στο GsearchGUI. 

 

Αφού δηµιουργηθεί η εικόνα (graph.jpg) του γράφου, ανοίγεται από το 

πρόγραµµα προβολής Autopics. 
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Σχήµα 5.13: Το Autopics.exe παρουσιάζει την εικόνα του γράφου, όπως παρήχθη 

από την plotgraph. 

 

3.Επιλέγουµε τα επιθυµητά ορίσµατα του gsearch. 

 

 
Σχήµα 5.14: Επιλογές των ορισµάτων του gsearch.exe. Όπου αυτές είναι 

συγκεκριµένες, η επιλογή γίνεται µέσω Combobox λιστών που περιέχουν µόνο τις 

προκαθορισµένες επιλογές. 
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4.Εκτελούµε την εντολή «Search». Εµφανίζεται για λίγο το kill.exe και το πρόγραµµα 

µας ενηµερώνει για τον ελάχιστο αριθµό ερευνητών που εντοπίσθηκε, αφού 

τελειώσει η έρευνα. 

 

 
Σχήµα 5.15: Το GsearchGUI κατά τη διάρκεια εκτέλεσης του gsearch.exe. 

 

 
Σχήµα 5.16: Μήνυµα τέλους εκτέλεσης του gsearch.exe.  

 

5. Επιλέγουµε το «ΟΚ» στο παραπάνω µήνυµα και εκτελούµε την «Plot Node 

Search». Παρακολουθούµε την έρευνα στο Autopics. 

 

 
Σχήµα 5.17: Στιγµιότυπο από την παρακολούθηση της στρατηγικής έρευνας µε το 

Autopics.exe. Οι εικόνες παρήχθησαν από την συνάρτηση plotnsearch. 
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Αν τώρα θέλουµε να εκτελέσουµε έρευνα στο παιχνίδι κόµβων αρχικά, και 

έπειτα να εφαρµόσουµε πάνω της τον αλγόριθµο Extra Searcher, µια πιθανή διαδοχή 

βηµάτων είναι η εξής: 

 

1.Επιλέγουµε τα αρχεία του γράφου. 

2.Εκτελούµε την εντολή «Plot Graph» είτε από το κουµπί είτε µε την συντόµευση 

πληκτρολογίου Alt+G.  

3.Επιλέγουµε τα επιθυµητά ορίσµατα του gsearch. 

4.Εκτελούµε την εντολή «Search». Το πρόγραµµα µας ενηµερώνει για τον ελάχιστο 

αριθµό ερευνητών που εντοπίσθηκε. 

 

Τα βήµατα 1-4 είναι πανοµοιότυπα µε το πρώτο σενάριο (απλή έρευνα 

κόµβων). Από εδώ και πέρα όµως εφαρµόζουµε πάνω στην αποθηκευµένη 

στρατηγική τον καθαρισµό αλµάτων (για να φανεί καλύτερα η διαφορά των δυο 

ερευνών) και τον Extra Searcher. Ακολουθεί η συνέχεια του σεναρίου. 

 

5. Επιλέγουµε το «ΟΚ» στο παραπάνω µήνυµα και εκτελούµε την 

«Plot Node Search». Παρακολουθούµε την έρευνα µε άλµατα στις κινήσεις των 

ερευνητών. Έπειτα εκτελούµε την «Teleport clear» και το πρόγραµµα µας 

ενηµερώνει για την αποπεράτωση της εντολής.  

 

 
Σχήµα 5.18: Αναγγελία τέλους του καθαρισµού αλµάτων µέσω του Eclear.exe. 

 

6. Επιλέγουµε το «ΟΚ» στο παραπάνω µήνυµα και εκτελούµε την «Plot Edge 

Search» για να παρακολουθήσουµε την αποτελεσµατικότητα της στρατηγικής µας για 

το παιχνίδι ακµών. 

 

 
Σχήµα 5.19: Στιγµιότυπο από την παρακολούθηση της στρατηγικής έρευνας µε το 

Autopics.exe. Οι εικόνες αναπαριστούν τις καταστάσεις των στοιχείων του γράφου 

για το παιχνίδι ακµών πλέον  
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Σχήµα 5.20: Στιγµιότυπο από την παρακολούθηση της στρατηγικής έρευνας µε το 

Autopics.exe. Η n-καθαριστική στρατηγική έρευνας προκαλεί επαναµόλυνση του 

γράφου στο παιχνίδι ακµών. 

 

Βλέπουµε πως η στρατηγική µας είναι ανεπαρκής για το παιχνίδι ακµών καθώς 

στο 13
ο
 βήµα π.χ. έχουµε επαναµόλυνση του γράφου από την ακµή 4-6. 

 

7. Εκτελούµε την εντολή «Extra Searcher» για να εφαρµόσουµε τον οµώνυµο 

αλγόριθµο στην ήδη υπάρχουσα στρατηγική έρευνας. 

 

 
Σχήµα 5.21: Εφαρµογή του Extra Searcher πάνω στην ήδη αποθηκευµένη 

στρατηγική έρευνας. 

 

Το πρόγραµµα µας ενηµερώνει για την αποπεράτωση της εντολής.  

 

 
Σχήµα 5.22: Μήνυµα ολοκλήρωσης του αλγορίθµου Extra Searcher. 



 - 64 - 64 

8. Επιλέγουµε το «ΟΚ» στο παραπάνω µήνυµα και εκτελούµε την «Plot Edge 

Search» για να παρακολουθήσουµε την νέα στρατηγική που προέκυψε. 

 

 
Σχήµα 5.23: Στιγµιότυπο από την παρακολούθηση της στρατηγικής έρευνας µε το 

Autopics.exe. 

 

Ως και το 12 βήµα, η έρευνα είναι πανοµοιότυπη µε πριν, καθώς δεν έχει ακόµα 

προκύψει η ανάγκη επέµβασης του Extra Searcher. 

 
Σχήµα 5.24: Στιγµιότυπο από την παρακολούθηση της στρατηγικής έρευνας µε το 

Autopics.exe. Ο ερευνητής στον κόµβο 2 είναι ο καθαριστής ακµών. 
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Όµως στο 13
ο
 βήµα, πριν την µετακίνηση του ερευνητή από τον κόµβο 4, 

εµφανίζεται ο Edge Cleaner. 

 

 
Σχήµα 5.25: Στιγµιότυπο από την παρακολούθηση της στρατηγικής έρευνας µε το 

Autopics.exe. Ο Edge cleaner σε δράση  

 

 
Σχήµα 5.26: Στιγµιότυπο από την παρακολούθηση της στρατηγικής έρευνας µε το 

Autopics.exe. Ο Edge cleaner σε δράση  
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Ο Edge Cleaner καθαρίζει την ακµή 4-6 αποτρέποντας την επικείµενη 

επαναµόλυνση του γράφου. 

 

 
Σχήµα 5.27: Συνέχεια της έρευνας µετά την επέµβαση του Edge cleaner. 

 

Η έρευνα συνεχίζεται κανονικά, χωρίς πλέον τον κίνδυνο επαναµόλυνσης. 
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Αν θέλουµε να εκτελέσουµε έρευνα στο παιχνίδι ακµών µε τον αλγόριθµο Extra 

Nodes, µια πιθανή διαδοχή βηµάτων είναι η εξής: 

 

1.Επιλέγουµε τα αρχεία του γράφου. 

 

 
Σχήµα 5.28: Κουµπιά επιλογής αρχείων. 

 

 

 
Σχήµα 5.29: ∆ιάλογος περιήγησης στο σύστηµα αρχείων. 
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2.Εκτελούµε την εντολή «Plot Graph» είτε από το κουµπί είτε µε  

την συντόµευση πληκτρολογίου Alt+G.  

 

 
Σχήµα 5.30: Eκτέλεση της εντολής vgraph.exe στο GsearchGUI. 

 

 

Αφού δηµιουργηθεί η εικόνα (graph.jpg) του γράφου, ανοίγεται από το 

πρόγραµµα προβολής Autopics. 

 

 
Σχήµα 5.31: Το Autopics.exe παρουσιάζει την εικόνα του γράφου (graph.jpg). 
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3.Επιλέγουµε τα επιθυµητά ορίσµατα του gsearch. 

 

 
 

Σχήµα 5.32: Επιλογές των ορισµάτων του gsearch.exe. 

 

4.Επιλέγουµε το παιχνίδι ακµών και τον επιθυµητό αλγόριθµο. 

 

 
 

Σχήµα 5.33: Προεπιλογή της έρευνας ακµών και επιλογή εφαρµογής του Extra 

Nodes. 

 

 

5.Εκτελούµε την εντολή «Search». Εµφανίζεται για λίγο το kill.exe και το πρόγραµµα 

µας ενηµερώνει για τον ελάχιστο αριθµό ερευνητών που εντοπίσθηκε, αφού 

τελειώσει η έρευνα. 
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Σχήµα 5.34: Εκτέλεση του gsearch.exe, αυτή τη φορά πάνω στον ψευδογράφο µε 

τους ενδιάµεσους κόµβους 

 

 

 
Σχήµα 5.35: Μήνυµα τέλους της εκτέλεσης του gsearch.exe. Ενηµέρωση για τον 

µικρότερο αριθµό ερευνητών που βρέθηκε. 

 

Παρατηρούµε ότι, µε τα ίδια δεδοµένα µε το παράδειγµα στο παιχνίδι κόµβων, τώρα 

απαιτείται ένας παραπάνω ερευνητής. 

 

6.Επιλέγουµε το «ΟΚ» στο παραπάνω µήνυµα και εκτελούµε την «Plot Edge Search» 

που έχει πλέον ενεργοποιηθεί. ∆ηµιουργούνται οι εικόνες και εκτελείται το Autopics 

στον αντίστοιχο φάκελο. Παρακολουθούµε τα βήµατα της πρώτης αποθηκευµένης 

στρατηγικής έρευνας για το παιχνίδι ακµών. Η παρακολούθηση µπορεί να γίνει και 

αυτόµατα µε το κουµπί «Start» στο Autopics. 
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Σχήµα 5.36 Στιγµιότυπο από την παρακολούθηση της e-καθαριστικής στρατηγικής 

έρευνας µε το Autopics.exe. 

 

7.Μπορούµε αν θέλουµε να παρακολουθήσουµε την ίδια στρατηγική έρευνας για το 

παιχνίδι κόµβων εκτελώντας την «Plot Node Search». Όπως έχει αποδειχθεί και 

θεωρητικά, είναι φανερό ότι αυτή η στρατηγική έρευνας είναι καθαριστική και για το 

παιχνίδι κόµβων. 
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6.Πειράµατα 
 

6.1 Εισαγωγικά 

 

Για τα πειράµατα της εργασίας, αναπτύχθηκαν λογιστικά φύλλα Excel τα οποία, 

µέσω µακροεντολών VBA, δέχονται τις κατάλληλες εισόδους (ορίσµατα gsearch), 

εκτελούν τις απαραίτητες εντολές (gsearch,Eclear) και τέλος αποθηκεύουν τα 

αποτελέσµατα σε πίνακες και σχηµατίζουν τα αντίστοιχα διαγράµµατα στα φύλλα 

εργασίας. 

 

Για τους διάφορους γράφους εκτελέσθηκαν τρεις τύποι πειραµάτων για να 

υπάρχει µια σχετικά ολοκληρωµένη εικόνα της συµπεριφοράς των αλγορίθµων: 

 

1. Στο πρώτο είδος πειραµάτων εκτελούνται όλες οι παραλλαγές του GSST 

για το παιχνίδι κόµβων, για το παιχνίδι ακµών µε τον αλγόριθµο Extra 

Searcher και τέλος για το παιχνίδι ακµών µε τον Extra Nodes. Στην n-

καθαριστική στρατηγική έρευνας που προκύπτει στην πρώτη περίπτωση 

εφαρµόζουµε έπειτα τον καθαρισµό διακτινισµού, έτσι ώστε να 

µπορούµε να συγκρίνουµε πιο αντικειµενικά τον αριθµό των βηµάτων 

της µε αυτόν των άλλων περιπτώσεων. Οι είσοδοι του πειράµατος είναι 

το αρχείο του γράφου και ο αριθµός των δένδρων που θα 

κατασκευαστούν, ενώ η ρίζα των ερευνών επιλέγεται κάθε φορά τυχαία. 

Αποθηκεύονται κάθε φορά όλες οι ελάχιστες στρατηγικές έρευνας έτσι 

ώστε να µπορούµε να µετρήσουµε όλα τα επιθυµητά µεγέθη. Τα µεγέθη 

που καταγράφονται στους πίνακες είναι τα εξής:  

a. ο ελάχιστος αριθµός ερευνητών (Min Searchers) που 

χρειάσθηκε για να καθαριστεί ο γράφος,  

b. ο ελάχιστος αριθµός βηµάτων (Min Steps) των ελάχιστων 

στρατηγικών που εντοπίσθηκαν ,  

c. ο µέσος αριθµός βηµάτων (average steps) των ελάχιστων 

στρατηγικών,  

d. το ποσοστό των ελάχιστων ερευνών (min Searchers %) σε 

σχέση µε όλες τις έρευνες που δοκιµάσθηκαν,  

e. το ποσοστό των ελάχιστων στρατηγικών µε ελάχιστο αριθµό 

βηµάτων (min Steps %) σε σχέση µε όλες τις έρευνες που 

δοκιµάσθηκαν,  

f. ο χρόνος εκτέλεσης του gsearch (Time (gsearch)),  

g. ο µέσος χρόνος εκτέλεσης του Eclear (Av. time (Eclear)) για τις 

αποθηκευµένες ελάχιστες στρατηγικές έρευνας (στην περίπτωση 

του παιχνιδιού κόµβων είναι ο χρόνος του καθαρισµού από 

διακτινισµό). Οι χρόνοι µετρούνται σε sec.  

 

Τέλος τα διαγράµµατα είναι δύο ιστογράµµατα που δείχνουν τη 

συµπεριφορά των διάφορων ερευνών σε σχέση µε τον ελάχιστο αριθµό 

ερευνητών στο πρώτο και τον ελάχιστο αριθµό βηµάτων στο δεύτερο. 
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2. Το δεύτερο είδος πειραµάτων είναι µια συγκριτική εξέταση των δύο 

αλγορίθµων για το παιχνίδι ακµών καθώς ο αριθµός των δένδρων 

αυξάνεται. ∆έχεται ως εισόδους το αρχείο του γράφου, την µέθοδο 

κατασκευής των δέντρων, την µέθοδο επιλογής ακµής, µια αρχική τιµή 

για τον αριθµό των δένδρων, το βήµα αύξησης των δένδρων και τέλος 

των αριθµό επαναλήψεων για κάθε βήµα αύξησης. Οι επαναλήψεις για 

συγκεκριµένο αριθµό δένδρων έχουν ως σκοπό την ελαχιστοποίηση του 

τυχαίου στοιχείου. Ο πίνακας των αποτελεσµάτων παραθέτει τους 

µέσους όρους 

a. του ελάχιστου αριθµού ερευνητών και  

b. του ελάχιστου αριθµού βηµάτων της έρευνας που πέτυχε ο 

κάθε αλγόριθµος σε κάθε βήµα αύξησης των δέντρων.  

 

Τα διαγράµµατα είναι οι αντίστοιχες γραφικές παραστάσεις των δύο 

µεγεθών καθώς αυξάνονται τα δένδρα. Τέλος σε κάθε διάγραµµα 

εµφανίζονται δύο καµπύλες διαφορετικού χρώµατος. Η µία αναφέρεται 

στον Extra Searcher ενώ η άλλη στον Extra Nodes. 

 

3. Το τρίτο πείραµα αποτελεί και αυτό µια συγκριτική εξέταση των δύο 

αλγορίθµων για το παιχνίδι ακµών καθώς ο αριθµός των δένδρων 

αυξάνεται. Η σύγκριση γίνεται µόνο ως προς τον ελάχιστο αριθµό 

ερευνητών. Η διαφορά µε το παραπάνω πείραµα είναι ότι ο κάθε 

αλγόριθµος εκτελείται µία µόνο φορά. Εξετάζεται ακριβώς η ιδιότητα 

του GSST να δίνει λύση σε οποιονδήποτε χρόνο. Η είσοδοι είναι το 

αρχείο του γράφου, την µέθοδο κατασκευής των δέντρων, την µέθοδο 

επιλογής ακµής και ο αριθµός των δένδρων. Στον πίνακα και στο 

διάγραµµα αποτελεσµάτων παρακολουθούµε  πως βελτιώνεται ο 

αριθµός των ερευνητών καθώς εξελίσσεται η έρευνα προς το 100% των 

δένδρων που πρόκειται να εξεταστούν. Καθώς η καµπύλη αυτή µπορεί 

να διαφέρει πολύ από έρευνα σε έρευνα λόγω του τυχαίου παράγοντα 

(µπορεί να βρεθεί πολύ γρήγορα κατά τύχη µια ελάχιστη έρευνα), το 

πείραµα επαναλήφθηκε πολλές φορές και παρουσιάζεται ένα ενδεικτικό 

αποτέλεσµα που εµφανίζεται συχνότερα από τα υπόλοιπα. 
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6.1 Γράφοι 

 

6.1.1 Απλός γράφος 1 

 

Η πρώτη σειρά πειραµάτων έγινε στο πολύ απλό γράφο του Σχήµατος 6.1. 

Εύκολα διακρίνουµε ότι είτε για το παιχνίδι κόµβων, είτε για το παιχνίδι ακµών, ο 

γράφος έχει imcs 2= .    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Σχήµα 6.1: Απλός γράφος 1. 

 

Εκτελούµε τις τρεις εκδοχές έρευνας του πρώτου πειράµατος για τον παραπάνω 

γράφο, για όλες τις παραλλαγές του GSST µε Μ=20 γεννητορικά δένδρα. 

Ακολουθούν τα αποτελέσµατα του πειράµατος. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Πίνακας 6.2: Αποτελέσµατα της έρευνας κόµβων στον γράφο του Σχήµατος 6.1. 

Πείραµα 1
ο
. 
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Πίνακας 6.3 Αποτελέσµατα της έρευνας ακµών στον γράφο του Σχήµατος 6.1. 

Πείραµα 1
ο
. 

 

Η πρώτη και πιο σηµαντική παρατήρηση στους παραπάνω πίνακες είναι ότι ο 

Extra Searcher (εκτός από την περίπτωση του uniform GSST-R) τοποθετεί έναν 

παραπάνω ερευνητή στο γράφο. Αυτό το γεγονός έχει να κάνει µε τη φύση του 

αλγορίθµου αλλά και του γράφου. Όπως αποδείχθηκε στο Θεώρηµα 3.11, αν ένας 

γράφος µπορεί να καθαριστεί για το παιχνίδι κόµβων µε Κ ερευνητές, τότε για το 

παιχνίδι ακµών  χρειάζονται Κ ή Κ+1 ερευνητές
1
. Η πλειοψηφία των γράφων µάλιστα 

ανήκει στη δεύτερη κατηγορία. Όµως η τοπολογία του συγκεκριµένου γράφου έχει 

ως αποτέλεσµα να αρκούν Κ. Έτσι ο καθαριστής ακµών που εισάγεται από τον Extra 

Searcher δεν είναι απαραίτητος. Βλέπουµε δηλαδή ότι ο γράφος αυτός αποτελεί µια 

εξαίρεση στην οποία η φύση του αλγορίθµου Extra Searcher τον καθιστά πιο 

αδύναµο από τον Extra Nodes. Με τον uniform GSST-R έχουµε όµως πάλι δυο 

ερευνητές. Λόγω ακριβώς της τυχαίας επιλογής ακµής προέκυψαν στην έρευνα 

κόµβων κάποιες στρατηγικές που καθαρίζουν τον γράφο και για το παιχνίδι ακµών. 

Στον αλγόριθµο Extra Searcher δεν απαιτήθηκε εισαγωγή ερευνητή και έτσι η 

στρατηγική παρέµεινε ως είχε. 

 

                                                 
1
 Θυµηθείτε ότι κάθε καθαριστική έρευνα ακµών είναι και καθαριστική έρευνα κόµβων, αλλά το 

αντίθετο δεν ισχύει. Άρα περιµένουµε για µια καθαριστική έρευνα ακµών να απαιτούνται τουλάχιστον 

τόσοι ερευνητές όσοι και για την αντίστοιχη έρευνα κόµβων.  
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Σχήµα 6.4: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1
ο
, στον απλό 

γράφο 1. 
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Σχήµα 6.5: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1
ο
, στον απλό γράφο 

1. 

 

 

Σχετικά µε τον αριθµό βηµάτων δεν µπορούµε να κρίνουµε ότι κάποιος 

αλγόριθµος είναι γενικά καλύτερος. Φαίνεται όµως καθαρά ότι, όπως και 

περιµένουµε άλλωστε, η έρευνα ακµών απαιτεί  παραπάνω βήµατα. Τα ποσοστά είναι 

λίγο καλύτερα στον Extra Searcher ενώ οι χρόνοι εκτέλεσης γενικά είναι  γενικά 

αµελητέοι . 

Ας δούµε τώρα την σύγκριση των δύο αλγορίθµων ως προς τον αριθµό 

βηµάτων. Επιλέξαµε την παραλλαγή uniform GSST-R για τη σύγκριση µε τις 

παρακάτω τιµές. 
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trees minimum: 1

step: 2

traversal random 

gen.tree uniform 

Repeats 5

Πίνακας 6.6: Πίνακας εισόδου δεδοµένων για το 2
ο
 Πείραµα στον απλό γράφο 1. 
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Σχήµα 6.7: Ελάχιστος αριθµός ερευνητών. Πείραµα 2

ο
 στον απλό γράφο 1. 
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Σχήµα 6.8: Ελάχιστος αριθµός βηµάτων. Πείραµα 2

ο
 στον απλό γράφο 1. 

 

Παρατηρούµε ότι ενώ ο ελάχιστος αριθµός των βηµάτων δίνει την εντύπωση 

ότι είναι πάντα παρόµοιος, ο αριθµός των ερευνητών δίχνει ξεκάθαρα ότι εδώ ο Extra 

Nodes υπερτερεί.  
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Στο τρίτο πείραµα παρακολουθούµε την µείωση του αριθµού ερευνητών που 

απαιτεί ο κάθε αλγόριθµος καθώς δοκιµάζει περισσότερα δέντρα (στο συγκεκριµένο 

πείραµα χρησιµοποιείται ο uniform GSST-L και ο µέγιστος αριθµός δέντρων είναι 

40). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Σχήµα 6.9: Ελάχιστος αριθµός ερευνητών. Πείραµα 3
ο
 στον απλό γράφο 1. 

 

Λόγω της χρήσης της συγκεκριµένης παραλλαγής του GGST, βλέπουµε ότι ο 

Extra Nodes δεν καταφέρνει να φτάσει το  imc

Ns . Το σηµείο της αλλαγής, συµπίπτει 

τυχαία µε τη βελτίωση και του Exrta Node.  

Συµπερασµατικά µπορούµε να πούµε ότι στον απλό αυτό γράφο, που απαιτεί 

ελάχιστο χρόνο εκτέλεσης, ο Extra Nodes είναι καλύτερος. Σηµαντικό είναι το 

γεγονός ότι ο γράφος έχει ιδιαίτερη τοπολογία. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 10 20 30 40 50 60 70 80 90 100

ES

EN



 - 80 - 80 

 

 

6.1.2 Απλός γράφος 2 

 

Ο επόµενος γράφος που εξετάζεται εξακολουθεί να ανήκει στην κατηγορία 

των σχετικά απλών γράφων, αλλά αυτή την φορά δεν έχει κάποια ιδιαίτερη 

τοπολογία. Επίσης έχει παραπάνω στοιχεία (κόµβους και ακµές). Οι δύο παραπάνω 

ιδιότητες τον καθιστούν πιο γενικό χαρακτηριστικό παράδειγµα των απλών γράφων. 

 

 
Σχήµα 6.10: Απλός γράφος 2 

 

Ακολουθούν τα αποτελέσµατα του πρώτου φύλλου πειραµάτων, µε Μ=300. 

 

 

 

 

 

 

 

 

 

 

 

Πίνακας 6.11: Αποτελέσµατα της έρευνας κόµβων στον απλό γράφο 4. Πείραµα 1
ο
. 
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Πίνακας 6.12: Αποτελέσµατα της έρευνας ακµών στον απλό γράφο 2. Πείραµα 1
ο
. 
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Σχήµα 6.13: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
, στον απλό 

γράφο 2. 
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Σχήµα 6.14: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
, στον απλό γράφο 

2. 

 

Βλέπουµε πως, σε αυτήν την περίπτωση, ενώ απαιτούνται 3 ερευνητές για το 

παιχνίδι κόµβων, και οι δύο αλγόριθµοι για το παιχνίδι ακµών χρειάζονται 4 

ερευνητές. Ο ελάχιστος αριθµός απαιτούµενων βηµάτων και ο µέσος αριθµός 

βηµάτων στις ελάχιστες στρατηγικές αυξάνονται αισθητά στον Extra Nodes. Όπως 

είναι αναµενόµενο η έρευνα κόµβων απαιτεί επίσης και λιγότερο αριθµό βηµάτων. 

Είναι επίσης φανερό πως ο Extra Nodes βρίσκει µεγαλύτερο ποσοστό ελάχιστων 

ερευνών. Τέλος παρατηρούµε ότι ο χρόνος εκτέλεσης του gsearch είναι γενικά 

µεγαλύτερος στον Extra Nodes. Το γεγονός αυτό µπορεί να εξηγηθεί από τη φύση 

του αλγορίθµου, καθώς ο ψευδογράφος που δίνεται στον GSST είναι 

πολυπλοκότερος του αρχικού (µε n+e κόµβους και 2 x e ακµές   -κεφάλαιο 4.1). 

Τα αποτελέσµατα του δεύτερου φύλλου πειραµάτων συνοψίζονται στο 

παρακάτω διάγραµµα. Οι δοκιµές έγιναν µε 8 επαναλήψεις σε κάθε βήµα και µε τον 

uniform GSST-LD καθώς είναι οι πιο ευνοϊκός για τον Extra Nodes που είναι γενικά 

χειρότερος σε αυτό το παράδειγµα.  
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Σχήµα 6.15: Ελάχιστος αριθµός ερευνητών. Πείραµα 2

ο
 στον απλό γράφο 2 
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Σχήµα 6.16: Ελάχιστος αριθµός βηµάτων. Πείραµα 2

ο
 στον απλό γράφο 2. 

 

Παρατηρούµε πως ο Extra Nodes βρίσκει πιο γρήγορα τον ελάχιστο αριθµό 

ερευνητών, όµως πολύ γρήγορα ο Exta Searcher φτάνει στο ίδιο αποτέλεσµα. Σχετικά 

µε τον αριθµό βηµάτων, βλέπουµε ότι ο Exta Searcher είναι σταθερά καλύτερος. 

Αυτό ο οφείλεται στην µεγαλύτερη πολυπλοκότητα του ψευδογράφου. 

Στο τρίτο πείραµα, µε τον DFS GSST-LD αυτή τη φορά, παρακολουθούµε 

πως οι δύο αλγόριθµοι βελτιώνουν τη λύση τους για Μ=40 γεννητορικά δένδρα. 
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Σχήµα 6.17: Ελάχιστος αριθµός ερευνητών. Πείραµα 3
ο
 στον απλό γράφο 2. 

 

 

Σε αυτό τον γράφο, παρατηρούµε ότι καθώς η πολυπλοκότητα αυξάνεται οι 

χρόνοι των δύο αλγορίθµων αρχίζουν να διαφέρουν. Επίσης φαίνεται µια αδυναµία 

του Extra Nodes τον αριθµό βηµάτων των στρατηγικών που παράγει. 
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6.1.3 ∆ένδρο 

 

Θα πραγµατοποιήσουµε τα πειράµατα ενδεικτικά για το δένδρο του σχήµατος 

6.15. Όπως έχει αποδειχθεί θεωρητικά τα παιχνίδια κόµβων και ακµών είναι 

ισοδύναµα στα δένδρα. Μια στρατηγική έρευνας που καθαρίζει ένα δένδρο για το 

παιχνίδι κόµβων, το καθαρίζει επίσης και για το παιχνίδι ακµών. Εποµένως 

περιµένουµε να δούµε γενικά παρόµοια αποτελέσµατα και για τους τρεις τύπους 

ερευνών. 

 

 

 
Σχήµα 6.18: Γράφος - δένδρο 

 

 

 

 

 

 

 

 

Οι δοκιµές του πρώτου φύλλου πειραµάτων έγιναν για Μ=20. 
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Πίνακας 6.19: Αποτελέσµατα της έρευνας κόµβων στο δένδρο. Πείραµα 1
ο
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Πίνακας 6.20: Αποτελέσµατα της έρευνας ακµών στο δένδρο. Πείραµα 1
ο
. 
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Σχήµα 6.21: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
, στο δένδρο. 
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Σχήµα 6.22: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
, στο δένδρο. 

 

Βλέπουµε, στον πίνακα αποτελεσµάτων, ότι επιβεβαιώνεται  η θεωρία. Τα 

αποτελέσµατα είναι ίδια για όλες τις έρευνες. Το µόνο µέγεθος που διαφέρει είναι ο 

ελάχιστος αριθµός βηµάτων, ο οποίος όµως κάθε φορά συµπίπτει µε τον µέσο όρο 

τους. Η διακύµανση αυτή δεν έχει να κάνει µε την αποτελεσµατικότητα της κάθε 

έρευνας αλλά µε την ρίζα που επιλέχθηκε τυχαία κάθε φορά. Αν για παράδειγµα 

επιλεχθεί ο κόµβος 11 θα απαιτούνται λιγότερα βήµατα απ’ ότι µε τον 8, δεν θα είναι 

απαραίτητη η κίνηση επιστροφής 11 8→  µετά τον καθαρισµό του κόµβου 11 (µε την 

8 11→ ). 

 

Ας δούµε τα αποτελέσµατα από τα άλλα δυο φύλλα πειραµάτων µε uniform 

GSST-L. 
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Σχήµα 6.23: Ελάχιστος αριθµός ερευνητών. Πείραµα 2

ο
 στο δένδρο. 
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Σχήµα 6.24: Ελάχιστος αριθµός βηµάτων. Πείραµα 2

ο
 στο δένδρο. 
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 Σχήµα 6.25: Ελάχιστος αριθµός ερευνητών. Πείραµα 3
ο
 στο δένδρο. 
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6.1.4. Πλέγµα 5Χ5 

 

Το πλήρες πλέγµα 5Χ5 έχει imc

Ns 5=  εποµένως σίγουρα µπορεί να καθαριστεί 

µε  6 ερευνητές στο παιχνίδι ακµών. Σε τέτοιας πολυπλοκότητας γράφους 

περιµένουµε ότι η πολυπλοκότητα του ψευδογράφου θα αυξηθεί έντονα.  

 

 
 

 

Σχήµα 6.26: Γράφος πλέγµατος 5x5 

 

Ακολουθούν τα αποτελέσµατα του πρώτου φύλλου πειραµάτων για Μ=5000 . 

 

 

 

 

 

 

 

 

 

 

 

Πίνακας 6.27: Αποτελέσµατα της έρευνας κόµβων στο Πλέγµα 5Χ5. Πείραµα 1
ο
. 
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Πίνακας 6.28: Αποτελέσµατα της έρευνας ακµών στο Πλέγµα 5Χ5. Πείραµα 1
ο
. 
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Σχήµα 6.29: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1
ο
, στο Πλέγµα 

5Χ5. 

 

 



 - 90 - 90 

0

50

100

150

200

250

300

350

GSST-

L

GSST-

LR

GSST-

R

GSST-

LW

GSST-

LD

M
in

 S
te

p
s

Node Search Uniform

Node Search DFS

Extra Searcher Uniform

Extra Searcher DFS

Extra Nodes Uniform

Extra Nodes DFS

 
Σχήµα 6.30: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
, στο Πλέγµα 5Χ5. 

 

Κατ’ αρχάς παρατηρούµε ότι ο πραγµατικός imc

Ns 5=  επιτεύχθηκε από τον 

umiform GSST µόνο.  

Η δεύτερη παρατήρηση είναι ο πολύ µικρότερος αριθµός βηµάτων που 

χρειάζεται στο παιχνίδι κόµβων, σε σχέση µε το παιχνίδι ακµών. 

Επίσης βλέπουµε πως ο Extra Nodes λειτουργεί καλύτερα µε DFS κατασκευή 

δένδρων. Πιθανότατα, αυτό οφείλεται στο γεγονός ότι οι ενδιάµεσοι κόµβοι έχουν 

µόνο δυο γειτονικούς ο καθένας και έτσι ο ψευδογράφος έρχεται πιο κοντά στους 

γενικούς γράφους από ότι τα πλέγµατα. 

Τέλος συγκρίνοντας τους δύο αλγορίθµους για το παιχνίδι ακµών, ο Extra 

Searcher είναι εµφανώς καλύτερος. Ο αριθµός ερευνητών είναι πολύ µικρότερος για 

τις παραλλαγές uniform και µικρότερος για τις DFS από αυτόν του Extra Nodes. 

Επιπλέον τα βήµατα των ελάχιστων στρατηγικών, και ως ελάχιστος αριθµός και ως 

µέσος όρος, είναι σε κάθε περίπτωση λιγότερα από τα µισά αυτών του Extra Nodes. 

Τέλος οι χρόνοι εκτέλεσης του gsearch και του Eclear γίνονται ασύµφορα µεγάλοι. 

Αυτό οφείλεται στην πολυπλοκότητα του ψευδογράφου για το gsearch, και στην 

υπολογιστική πολυπλοκότητα του καθαρισµού των παραγόµενων στρατηγικών από 

τους ενδιάµεσους κόµβους για το Eclear. 

 

Για το δεύτερο φύλλο πειραµάτων επιλέγουµε τον DFS GSST-LR ως ευνοϊκή 

περίπτωση για τον Extra Nodes (όχι όµως η ευνοϊκότερη). Ακολουθούν τα 

διαγράµµατα των αποτελεσµάτων µε 5 επαναλήψεις για κάθε βήµα. 
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Σχήµα 6.31: Ελάχιστος αριθµός ερευνητών. Πείραµα 2

ο
 στο Πλέγµα 5Χ5. 
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Σχήµα 6.32: Ελάχιστος αριθµός βηµάτων. Πείραµα 2

ο
 στο Πλέγµα 5Χ5. 

 

Βλέπουµε ότι στα 980 πρώτα ο αριθµός ερευνητών του Extra Searcher είναι 

ελάχιστα καλύτερος, καθώς πλησιάζει πιο κοντά στο 7. Στον αριθµό των βηµάτων 

φαίνεται καθαρά πώς η πολυπλοκότητα του ψευδογράφου παράγει ανούσιες, για τον 

καθαρισµό κινήσεις.  

 

Στο τελευταίο φύλλο παρατηρούµε την πορεία βελτίωσης µιας έρευνας µε 1600 

γεννητορικά δένδρα. 
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Σχήµα 6.33: Ελάχιστος αριθµός ερευνητών. Πείραµα 3

ο
 στο Πλέγµα 5Χ5. 

 

Από τα τρία πειράµατα, συµπεραίνουµε ασφαλώς ότι ο Extra Searcher κερδίζει 

γρήγορα έδαφος, όσο αυξάνεται η πολυπλοκότητα του γράφου. 
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6.1.5. ∆ένδρο-Πλέγµα 4Χ4 

 

Με το γράφο αυτό επιχειρείται ο συνδυασµός ενός πλέγµατος µε ένα δένδρο. 

Θα δούµε έτσι ποια συµπεριφορά υπερισχύει. Ο γράφος του σχήµατος 6.5 έχει 
imc

Ns 4=  καθώς αν ξεκινήσει µια παράλληλη σάρωσή του από κάτω προς τα πάνω, το 

πλέγµα καθαρίζεται µε 4 ερευνητές. Έπειτα είναι αρκετοί για να καθαρίσουν και τα 

δένδρο. Εποµένως σίγουρα αρκούν 5 ερευνητές για τον καθαρισµό του στο παιχνίδι 

ακµών, σύµφωνα µε το θεώρηµα 3.11. 

 
Σχήµα 6.34: ∆ένδρο-Πλέγµα 4Χ4 

 

Ακολουθούν τα αποτελέσµατα του πρώτου  φύλλου πειραµάτων µε Μ=1000. 

 

 

 

 

 

 

 

 

 

 

 

 

Πίνακας 6.35: Αποτελέσµατα της έρευνας κόµβων στο ∆ένδρο-Πλέγµα. Πείραµα 1
ο
. 
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Πίνακας 6.36: Αποτελέσµατα της έρευνας ακµών στο ∆ένδρο-Πλέγµα. Πείραµα 1
ο
. 
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Σχήµα 6.37: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
, στο ∆ένδρο-

Πλέγµα. 
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Σχήµα 6.38: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
, στο ∆ένδρο-

Πλέγµα. 

 

Αρχικά παρατηρούµε ότι ο GSST κατάφερε να βρει τον ελάχιστο αριθµό 

ερευνητών µε τις uniform παραλλαγές του, ενώ οι DFS χρειάζονται έναν παραπάνω. 

Όπως φάνηκε και από τα πειράµατα της [41] η καλύτερη συµπεριφορά των uniform 

παραλλαγών είναι χαρακτηριστικό των πλεγµάτων. Το γεγονός αυτό, σε συνδυασµό 

µε την απλότητα των δένδρων, µας υποδεικνύει ότι επικρατούν τα χαρακτηριστικά 

του πλέγµατος. 

Επίσης παρατηρούµε για άλλη µια φορά ότι ο Extra Nodes προτιµά τις DFS 

παραλλαγές του GSST. Αντιθέτως ο Extra Searcher φαίνεται, όπως λογικά 

περιµέναµε, να υιοθετεί την συµπεριφορά του GSST και να προτιµά τις uniform 

παραλλαγές για τα πλέγµατα (άρα και για τον γράφο του σχήµατος 6.5 όπου 

επικρατούν τα χαρακτηριστικά του πλέγµατος). 

Για άλλη µια φορά βλέπουµε ότι η έρευνα κόµβων απαιτεί σαφώς λιγότερα 

βήµατα.  

Συγκρίνοντας τους δύο αλγορίθµους , και πάλι ο Extra Searcher είναι καλύτερος 

από άποψη αριθµού ερευνητών, αριθµού βηµάτων, ποσοστού ελάχιστων ερευνών 

αλλά και χρόνου εκτέλεσης. Βλέπουµε µάλιστα πόσο µεγαλύτεροι είναι οι χρόνοι του 

Extra Nodes. 

 

Για το δεύτερο φύλλο πειραµάτων επιλέγουµε τον DFS GSST-L ως ευνοϊκό για τον 

Extra Nodes. Έγιναν 5 επαναλήψεις των δοκιµών σε κάθε βήµα της έρευνας. 
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Σχήµα 6.39: Ελάχιστος αριθµός ερευνητών. Πείραµα 2
ο
 στο ∆ένδρο-Πλέγµα. 
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Σχήµα 6.40: Ελάχιστος αριθµός βηµάτων. Πείραµα 2

ο
 στο ∆ένδρο-Πλέγµα. 

 

Βλέπουµε ότι παρά την ευνοϊκή προς τον Extra Nodes επιλογή της παραλλαγής του 

GSST  ο Extra Searcher φτάνει πιο γρήγορα στους 6 ερευνητές και µάλιστα µε 

λιγότερα από τα µισά βήµατα στην στρατηγική έρευνας. 
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Τέλος το διάγραµµα της βελτίωσης του τρίτου φύλλου µε Μ=40. 
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Σχήµα 6.41: Ελάχιστος αριθµός ερευνητών. Πείραµα 3

ο
 στο ∆ένδρο-Πλέγµα. 

 

Τα συµπεράσµατα και από τα τρία φύλλα είναι ξεκάθαρα ευνοϊκά για τον Extra 

Searcher. 
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6.1.6. Γράφος του NSH 

 

 Στο σχήµα 6.39 βλέπουµε την κάτοψη του ισογείου του κτιρίου Newel-Simon 

στο Carnegie Mellon University. 

 
Σχήµα 6.42: Κάτοψη του ισογείου του κτιρίου Newel-Simon. 

 

Η κάτοψη του Σχ.6.39 µπορεί να αναχθεί στον γράφο του Σχ. 6.40 

 
Σχήµα 6.43:Γράφος του ισογείου του κτιρίου Newel-Simon. 

 

Ο γράφος του σχήµατος 6.40 έχει 61  κόµβους (δωµάτια) και 67 ακµές (πόρτες ) , 

είναι πιο απλός ως γράφος από τους δύο προηγούµενους. Η απλή node-clearing 

έρευνα, έχει δώσει σε προηγούµενα πειράµατα imc

Ns 3= .  Εποµένως ο extra searcher 

αλγόριθµος, κατά πάσα πιθανότητα θα καθαρίσει πλήρως το γράφο µε 4 ερευνητές. 
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Επίσης το γεγονός ότι οι ακµές είναι σχετικά αραιές µας προδιαθέτει θετικά προς τον 

extra nodes, αλλά ο βαθµός πολυπλοκότητας του γράφου εξακολουθεί να είναι 

µεγάλος. 

 

 

 

Το πρώτο φύλλο πειραµάτων εκτελέσθηκε µε Μ=4000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Πίνακας 6.44: Αποτελέσµατα του 1
ου

 πειράµατος στο γράφο του NSH. 
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Σχήµα 6.45: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
, στο γράφο του 

NSH. 
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Σχήµα 6.46: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
, στο γράφο του 

NSH. 

 

 

Παρατηρούµε ότι ο ελάχιστος αριθµός ερευνητών επιτεύχθηκε για το παιχνίδι 

ακµών και ο Extra Searcher, ακολουθώντας τις n-καθαριστικές στρατηγικές καθάρισε 

τον γράφο για το παιχνίδι ακµών µε 4 ερευνητές. Ο Extra Nodes χρειάζεται έναν 

παραπάνω ερευνητή και εξακολουθεί να βγάζει καλύτερα αποτελέσµατα µε τις DFS 

παραλλαγές του GSST. 

Επίσης βλέπουµε η έρευνα ακµών µε τον Extra Searcher δεν απαιτεί πολύ 

περισσότερα βήµατα από την έρευνα κόµβων. Αυτό είναι απόρροια της αραιής δοµής 

του γράφου που καθιστά την χρήση του καθαριστή ακµών ελάχιστη. Αντίθετα ο Extra 

Nodes παράγει, για άλλη µια φορά, στρατηγικές που χρειάζονται πολύ περισσότερα 

βήµατα. Τα συµπεράσµατα για τα διάφορα µεγέθη των ερευνών εξακολουθούν να 

είναι ευνοϊκά για τον Extra Searcher. ∆εν πρέπει να παραπλανηθούµε από τα υψηλά 

ποσοστά των ελάχιστων ερευνών του Extra Nodes για τις DFS παραλλαγές, καθώς 

αυτά αναφέρονται στις έρευνες µε imc

Es 5= , ενώ αυτά του Extra Nodes σ’ αυτές µε 
imc

Es 4=  (εκτός του GSST-R). 
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Τέλος ενδιαφέρον είναι ότι οι GSST-R παραλλαγές δεν είναι τόσο αποδοτικές. 

Αυτό µπορεί να εξηγηθεί από τη δοµή του γράφου. Με την τυχαία επιλογή σε ένα 

αραιό αλλά ταυτόχρονα πολύπλοκο γράφο µπορεί πολύ εύκολα να παραχθούν 

ανούσιες κινήσεις. Η επιστροφή όµως του ερευνητή στον ενεργητικό καθαρισµό του 

γράφου θα απαιτήσει πολλά βήµατα καθώς η αραιότητα του γράφου έχει ως 

αποτέλεσµα να µην υπάρχουν πάντα σύντοµα µονοπάτια.  

Ακολουθούν τα αποτελέσµατα του δεύτερου και του τρίτου φύλλου πειραµάτων 

για τον DFS GSST-LR . Εκτελέσθηκαν 8 επαναλήψεις σε κάθε βήµα της έρευνας, 

ενώ στο τρίτο φύλλο επιλέχθηκε Μ=100 
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Σχήµα 6.47: Ελάχιστος αριθµός ερευνητών. Πείραµα 2

ο
 στο γράφο του NSH. 
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Σχήµα 6.48: Ελάχιστος αριθµός βηµάτων. Πείραµα 2

ο
 στο γράφο του NSH. 
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Σχήµα 6.49: Ελάχιστος αριθµός ερευνητών. Πείραµα 2

ο
 στο γράφο του NSH. 

 

Ο Extra Searcher φαίνεται να είναι καλύτερος για άλλη µια φορά. 
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6.1.7. Eθνική πινακοθήκη  (Washington D.C.) 

 

 Στο Σχ.6.46 βλέπουµε την κάτοψη του ισογείου της εθνικής πινακοθήκης 

στην Washington D.C. 

 

 
Σχήµα 6.50: Κάτοψη του ισογείου της εθνικής πινακοθήκης (Washington D.C.) 

 

Η κάτοψη του σχήµατος 6.46 µπορεί να αναπτυχθεί στον γράφο του σχήµατος 6.47 

 
Σχήµα 6.51: του ισογείου της εθνικής πινακοθήκης (Washington D.C.) 

 

Ο γράφος του σχήµατος 6.8 αποτελείται από 70 κόµβους και 93 ακµές και είναι 

πολυπλοκότερος από όλους τους προηγούµενους γράφους. Έχει µιάµιση φορά της 

ακµές του NSH αλλά έχει πάρα πολύ µεγάλο αριθµό γεννητορικών δένδρων (περίπου 
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145,3x10  υπολογισµένα µε το θεώρηµα Kirchoff) σε σχέση µε το NSH (3604). 

Επιπλέον, δεν µπορούµε να προβλέψουµε τους ελάχιστους αριθµούς ερευνητών αλλά 

προηγούµενα πειράµατα µε Μ= 151,5x10 , στην [41]  έδωσαν ελάχιστο αριθµό 

ερευνητών ίσο µε 5 για το παιχνίδι ακµών. 

 

Ακολουθούν τα αποτελέσµατα του πρώτου φύλλου πειραµάτων µε Μ=60000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Πίνακας 6.52: Αποτελέσµατα του 1
ου

 πειράµατος στο γράφο της εθνικής 

πινακοθήκης (Washington D.C.) 
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Σχήµα 6.53: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
, στο γράφο της 

εθνικής πινακοθήκης (Washington D.C.) 
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Σχήµα 6.54: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
, στο γράφο της 

εθνικής πινακοθήκης (Washington D.C.) 

 

 

Αρχικά παρατηρούµε ότι ο GSST εντόπισε στρατηγικές µε  5 ερευνητές και 

ακολούθως ο Extra Searcher µε 6. Βλέπουµε πως και σε αυτόν το γενικό γράφο οι 

DFS παραλλαγές λειτουργούν καλύτερα για την απλή έρευνα κόµβων και συνεπώς 

και για τον Extra Searcher. Σε αυτόν τον πιο πυκνό γράφο βλέπουµε πως απαιτούνται 

αρκετά περισσότερα βήµατα για το παιχνίδι ακµών από το παιχνίδι κόµβων. 

Παρατηρούµε επίσης πώς η µεγάλη πολυπλοκότητα του γράφο (και άρα η πολύ 

µεγαλύτερη του ψευδογράφου) έχουν ως αποτέλεσµα τους πολύ µεγαλύτερους 

αριθµούς βηµάτων µε τον  Extra Nodes αλγόριθµο. 

Τέλος βλέπουµε ότι και από άποψη αριθµού ερευνητών και από άποψη χρόνου 

εκτέλεσης ο Extra Searcher υπερισχύει ξανά. Χαρακτηριστικά µεγάλοι είναι και οι 

χρόνοι εκτέλεσης του gsearch πάνω στον ψευδογράφο. 

Ακολουθούν τα διαγράµµατα των υπολοίπων φύλλων πειραµάτων. Στο δεύτερο 

φύλλο χρησιµοποιήθηκε ο DFS GSST-LR µε 4 επαναλήψεις κάθε φορά και στο τρίτο 

ο uniform GSST-LR για M=3000. 



 - 106 - 106 

0

1

2

3

4

5

6

7

8

9

10 81
0

16
10

24
10

32
10

40
10

48
10

56
10

64
10

72
10

80
10

88
10

96
10

10
41

0

11
21

0

12
01

0

12
81

0

Trees

S
n

u
m

Extra Nodes

Extra searcher

 
Σχήµα 6.55: Ελάχιστος αριθµός ερευνητών. Πείραµα 2

ο
 στο γράφο της εθνικής 

πινακοθήκης (Washington D.C.) 
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Σχήµα 6.56: Ελάχιστος αριθµός βηµάτων. Πείραµα 2

ο
 στο γράφο της εθνικής 

πινακοθήκης (Washington D.C.) 

 

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

ES

EN

 
Σχήµα 6.57: Ελάχιστος αριθµός ερευνητών. Πείραµα 3

ο
 στο γράφο της εθνικής 

πινακοθήκης (Washington D.C.) 
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Για άλλη µια φορά διαφαίνεται η ανωτερότητα του Extra Searcher στην επίλυση 

πολύπλοκων γράφων. 

Συµπερασµατικά µπορούµε να πούµε ότι ο Extra Nodes λειτουργεί αρκετά καλά 

στους απλούς γράφους. Ορισµένες φορές µάλιστα, στις εξαιρέσεις που δεν χρειάζεται 

νέος ερευνητής, λειτουργεί καλύτερα από τον Extra Searcher. Τα πράγµατα αλλάζουν 

πολύ όµως στους πιο περίπλοκους γράφους όπου ο Extra Nodes γίνεται υπερβολικά 

ασύµφορος από άποψη χρόνου εκτέλεσης. Επίσης αδυνατεί συχνά να βρει το 

καλύτερο imc

Es , ενώ όσο αυξάνεται η έκταση του γράφου, εκµηδενίζονται οι ελπίδες 

να αποτελεί εξαίρεση του Θεωρήµατος 3.11 και να µην χρειάζεται ο καθαριστής 

ακµών. 
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6.2 Οικογένειες γράφων 

 

Τα πειράµατα της ενότητας 6.1 έδειξαν ξεκάθαρα ότι το Extra Nodes γίνεται 

ασύµφορος καθώς αυξάνεται η πολυπλοκότητα των γράφων. Στη δεύτερη ενότητα 

των πειραµάτων θα ασχοληθούµε µε δύο οικογένειες γράφων. Η πολυπλοκότητα τους 

και η µαζικότητα των πειραµάτων επιβάλλουν να εγκαταλειφθεί ο Extra Nodes και να 

επικεντρωθούµε πλέον στην αποδοτικότητα του Extra Searcher. Τα συγκριτικά 

πειράµατα (φύλλο 2 και 3) δεν έχουν τώρα κάποιο νόηµα, εποµένως παραµένει µόνο 

το πρώτο φύλλο πειραµάτων 

 

6.2.1 Πλήρη Πλέγµατα 

 

Αν επεκτείνουµε τις δοκιµές µας από το πλέγµα 5 Χ 5 (Κεφ.6.1.4) και σε 

µεγαλύτερα πλέγµατα, προκύπτει µια ολόκληρη οικογένεια γράφων µε παρόµοιες 

ιδιότητες. Τα πλήρη πλέγµατα είναι γενικά πολύπλοκοι γράφοι µε πολλά γεννητορικά 

δένδρα λόγω της πυκνής τους δοµής., Είναι προφανές ότι ένα πλέγµα 1 2J xJ  µπορεί 

να καθαριστεί για το παιχνίδι ακµών µε 0 1 2J min( J ,J )=  ερευνητές, τοποθετώντας 

τους κατά µήκος της µικρότερης διάστασης και έπειτα ολισθαίνοντάς τους  µε 

παράλληλες κινήσεις µέχρι το τέλος της µεγάλης διάστασης. Εποµένως ξέρουµε π.χ.  

ότι ένα πλήρες πλέγµα 5 Χ 3 µπορεί να n-καθαριστεί µε 3 ερευνητές. Επιπλέον 

σύµφωνα µε το Θεώρηµα 3.11 χρειάζεται το πολύ ένας ακόµη για να καθαριστεί για 

το παιχνίδι ακµών. 

 

 
Σχήµα 6.58:Πλήρες πλέγµα 8 Χ 8 

 

Στα πειράµατά µας ασχοληθήκαµε µόνο µε τετραγωνικά πλέγµατα από 5 Χ 5 ως 

10 x 10 . Ακολουθεί ένας πίνακας που αναφέρει τους αριθµούς των γεννητορικών 

δένδρων κάθε εξεταζόµενου πλέγµατος. 
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Πίνακας 6.59 Ο αριθµός των γεννητορικών δένδρων για τα πλήρη πλέγµατα 

 

Για το πλέγµα 5 x 5 το πείραµα ξανάγινε µε 5M 10=  καθώς τώρα, αντίθετα µε 

αυτό της παραγράφου 6.1.4, δεν εξετάζουµε τον Extra Nodes. 

 
Πίνακας 6.60: Αποτελέσµατα του 1

ου
 πειράµατος στο Πλέγµα 5 Χ 5 ( 5M 10= ).  
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Σχήµα 6.61: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
 στο Πλέγµα       

5 Χ 5 ( 5M 10= ).  
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Σχήµα 6.62: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
 στο Πλέγµα 5 Χ 5 

( 5M 10= ).  

 

 

Για το 6 x 6 µε 5M 2 10= ⋅  

 
Πίνακας 6.63: Αποτελέσµατα του 1

ου
 πειράµατος στο Πλέγµα 6 Χ 6 ( 5M 2 10= ⋅ ).  
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Σχήµα 6.64: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
 στο Πλέγµα      

6 Χ 6 ( 5M 2 10= ⋅ ).  
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Σχήµα 6.65: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
 στο Πλέγµα 6 Χ 6 

( 5M 2 10= ⋅ ).  
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Για το 7 x 7 µε 5M 3 10= ⋅  

 
Πίνακας 6.66: Αποτελέσµατα του 1

ου
 πειράµατος στο Πλέγµα 7 Χ 7 ( 5M 3 10= ⋅ ). 
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Σχήµα 6.67: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
 στο Πλέγµα      

7 Χ 7 ( 5M 3 10= ⋅ ).  
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Σχήµα 6.68: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
 στο Πλέγµα 7 Χ 7 

( 5M 3 10= ⋅ ).  

 

Για το 8 x 8 µε 5M 3 10= ⋅  

 
Πίνακας 6.69: Αποτελέσµατα του 1

ου
 πειράµατος στο Πλέγµα 8 Χ 8 ( 5M 3 10= ⋅ ).  
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Σχήµα 6.70: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
 στο Πλέγµα      

8 Χ 8 ( 5M 3 10= ⋅ ).  
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Σχήµα 6.71: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
 στο Πλέγµα 8 Χ 8 

( 5M 3 10= ⋅ ).  
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Για το 9 x 9 µε 5M 4 10= ⋅  

 
Πίνακας 6.72: Αποτελέσµατα του 1

ου
 πειράµατος στο Πλέγµα 9 Χ 9 ( 5M 4 10= ⋅ ). 
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Σχήµα 6.73: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
 στο Πλέγµα      

9 Χ 9 ( 5M 4 10= ⋅ ).  
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Σχήµα 6.74: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πείραµα 1

ο
 στο Πλέγµα 9 Χ 9 

( 5M 4 10= ⋅ ).  

 

Τέλος, για το 10 x 10 µε 5M 5 10= ⋅  

 
Πίνακας 6.75: Αποτελέσµατα του 1

ου
 πειράµατος στο Πλέγµα 10 Χ 10 ( 5M 5 10= ⋅ ).  



 - 117 - 117 

0

2

4

6

8

10

12

14

16

18

GSST-

L

GSST-

LR

GSST-

R

GSST-

LW

GSST-

LD

M
in

 S
e
a
rc

h
e
rs

Node Search Uniform

Node Search DFS

Extra Searcher Uniform

Extra Searcher DFS

 
Σχήµα 6.76: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Πείραµα 1

ο
 στο Πλέγµα      

10 Χ 10 ( 5M 5 10= ⋅ ).  
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Σχήµα 6.77: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Πλέγµα 10 Χ 10 

( 5M 5 10= ⋅ ).  
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Βλέπουµε αρχικά ότι ο GSST δεν εντόπισε τον πραγµατικό ελάχιστο αριθµό 

ερευνητών, παρά µόνο για το πλέγµα 5 x 5. Στα υπόλοιπα πλέγµατα βρήκε έναν                    

( 6 x 6 , 7 x 7, 8 x 8 ) ή δύο παραπάνω ( 9 x 9, 10 x 10 ). Ωστόσο γνωρίζοντας τον 

πολύ µεγάλο αριθµό γεννητορικών δένδρων που υπάρχουν για κάθε γράφο (σε σχέση 

και µε τα Μ που επιλέχθηκαν), µπορούµε να πούµε ότι, για τέτοιας δυσκολίας 

γράφους, τα αποτελέσµατα είναι πολύ καλά. Βλέπουµε επίσης πως η απόδοση του 

Extra Searcher δεν επηρεάζεται, όπως και περιµέναµε άλλωστε, από το µέγεθος του 

γράφου, καθώς προσθέτει πάντα έναν επιπλέον ερευνητή. Ο αριθµός των βηµάτων 

στο παιχνίδι ακµών αυξάνεται κατά πολύ σε όλους τους γράφους καθώς, µέσα στην 

κάθε ήδη πολύπλοκη έρευνα, προστίθενται τα βήµατα του edge cleaner. 

Γενικά βλέπουµε ότι στα πλέγµατα λειτουργούν καλύτερα οι uniform 

παραλλαγές του GSST και από άποψη αριθµού ερευνητών και βηµάτων αλλά και από 

άποψη ποσοστών. Τέλος βλέπουµε πόσο µικρά γίνονται τα ποσοστά καλύτερων 

ερευνών όσο αυξάνονται οι διαστάσεις του εξεταζόµενου γράφου. 
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6.2.2 Ελαττωµένα Πλέγµατα 

 

Τα τελευταία µας πειράµατα έγιναν πάνω στα λεγόµενα «ελαττωµένα 

πλέγµατα». Αυτά παράγονται µε την εξής διαδικασία. Αρχικά επιλέγουµε τις 

παραµέτρους 1J  και 2J , δηλαδή το µήκος και το πλάτος του πλέγµατος. Όπως και 

στα πλήρη πλέγµατα, τοποθετούµε κόµβους στις θέσεις 

1 2 1 2( j , j ) {1,2,...,J }X{1,2,...,J }∈ . Στη συνέχεια ενώνουµε (µε ακµές) όλους τους 

διπλανούς κόµβους κατά µήκος των γραµµών 2 1 2(1, j ),( J , j )  και 1 2( j ,J )  (µε 

1 1j {1,2,...,J }∈  και 2 2j {1,2,...,J }∈  ) και έτσι δηµιουργείται ένα δένδρο της µορφής 

αυτού του σχήµατος 6.78, µε τις συµπαγείς γραµµές µόνο. Αυτό γίνεται για να 

εξασφαλιστεί η συνεκτικότητα του γράφου. Τέλος, εξετάζουµε όλα τα διπλανά ζεύγη 

κόµβων 1 2 1 2( i ,i ),( j , j )  που δεν είναι ήδη ενωµένα, και τα συνδέουµε µε µια ακµή µε 

πιθανότητα p. 

 
Σχήµα 6.78: Κατασκευή ενός ελαττωµένου πλέγµατος. Οι συµπαγείς γραµµές 

αντιστοιχούν στις ακµές που υπάρχουν πάντα στον γράφο. Κάθε διακεκοµµένη 

γραµµή γίνεται ακµή µε πιθανότητα p. 

 

Ο γράφος G που δηµιουργείται είναι ένας υπογράφος του πλήρους πλέγµατος 

1 2J xJ  και έχει imc

N 1 2s ( ) min( J ,J )≤G  (και imc

E 1 2s ( ) min( J ,J ) 1≤ +G ). ∆ηλαδή το 

1 2min( J ,J )  θέτει ένα άνω όριο ( χρήσιµο για την εκτίµηση της απόδοσης του GSST) 

για το imc

Ns ( )G . Φαίνεται λογικό ότι, γενικά, το imc

Ns ( )G  (άρα και το imc

Es ( )G ) θα 

είναι µια αύξουσα συνάρτηση του p και για p = 1 το όριο είναι αυστηρά 
imc

N 1 2s ( ) min( J ,J )=G  (και imc

E 1 2s ( ) min( J ,J ) 1= +G ).Τέλος, όσο το p  πλησιάζει το 

0 τόσο ο γράφος µοιάζει στη µορφή µε δένδρο ( έχει λιγότερους κύκλους). 

Παράγουµε 6 οικογένειες ελαττωµένων πλεγµάτων, χρησιµοποιώντας τις 

διαστάσεις 5 X 5, 6 X 6, 7 X 7 και τις πιθανότητες p = 0,4375  και p = 0,75 . 

Παράγουµε 50 γράφους από κάθε οικογένεια και δοκιµάζουµε πάνω τους τις δέκα 

παραλλαγές του GSST και έπειτα τον Extra Searcher. Χρησιµοποιούµε 45 10⋅  

γεννητορικά δένδρα σε κάθε εφαρµογή του GSST. Οι τιµές που εµφανίζονται στους 

πίνακες αποτελεσµάτων είναι πλέον οι µέσοι όροι των αντίστοιχων τιµών, στα 

προηγούµενα πειράµατα. Τέλος, λόγω του µεγάλου αριθµού ελάχιστων στρατηγικών 

που παράγονται σε κάποιες περιπτώσεις (π.χ. στους 5 X 5 µε p = 0,4375 µπορεί να 

φτάσουν τις δεκάδες χιλιάδες) για να καταστεί δυνατή η εκτέλεση των πειραµάτων, 

επιλέγουµε τυχαία 100 από αυτές για να εξετασθούν από τον Extra Searcher. Αυτό το 

τέχνασµα µας δίνει µια αρκετά καλή εικόνα χωρίς να απαιτούνται πολλές ώρες για 
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κάθε γραµµή του πίνακα (π.χ. για 10.000 στρατηγικές σε 50 γράφους µε µέσο χρόνο 

εκτέλεσης του Extra Searcher 0,06 sec θέλουµε 10.000 Χ 50 Χ 0.06 = 30000 sec 

δηλαδή 8,34 ώρες για µία γραµµή του πίνακα! , χωρίς καν να υπολογίσουµε τους 

χρόνους εγγραφής και διαγραφής των 50 Χ 10.000 αρχείων στο δίσκο). 

Ακολουθούν οι πίνακες αποτελεσµάτων. Υπενθυµίζουµε πως όλα τα πειράµατα 

έγινα για 4M 5 10= ⋅  και οι τιµές είναι οι αντίστοιχοι µέσοι όροι από τους 50 

γράφους της κάθε οικογένειας ελαττωµένων πλεγµάτων. 

 

 
Πίνακας 6.79: Αποτελέσµατα του 1

ου
 πειράµατος στα 5 Χ 5 µε p = 0,4375.   
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Σχήµα 6.80: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Ελαττωµένα πλέγµατα        

5 Χ 5 µε p = 0,4375. 



 - 121 - 121 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

GSST-L GSST-

LR

GSST-R GSST-

LW

GSST-

LD

M
in

 S
te

p
s

Node Search Uniform

Node Search DFS

Extra Searcher Uniform

Extra Searcher DFS

 
Σχήµα 6.81: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Ελαττωµένα πλέγµατα 5 Χ 5 

µε p = 0,4375. 

 

 
Πίνακας 6.82: Αποτελέσµατα του 1

ου
 πειράµατος στα 5 Χ 5 µε p = 0,75.   
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Σχήµα 6.83: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Ελαττωµένα πλέγµατα        

5 Χ 5 µε p = 0,75.   
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Σχήµα 6.84: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Ελαττωµένα πλέγµατα 5 Χ 5 

µε p = 0,75.   
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Πίνακας 6.85: Αποτελέσµατα του 1

ου
 πειράµατος στα 6 Χ 6 µε p = 0,4375.   

 

0,00

1,00

2,00

3,00

4,00

5,00

6,00

GSST-

L

GSST-

LR

GSST-

R

GSST-

LW

GSST-

LD

M
in

 S
e
a
rc

h
e
rs Node Search Uniform

Node Search DFS

Extra Searcher Uniform

Extra Searcher DFS

 
 

Σχήµα 6.86: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Ελαττωµένα πλέγµατα        

6 Χ 6 µε p = 0,4375.   
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Σχήµα 6.87: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Ελαττωµένα πλέγµατα 6 Χ 6 

µε p = 0,4375.   

 

 
Πίνακας 6.88: Αποτελέσµατα του 1

ου
 πειράµατος στα 6 Χ 6 µε p = 0, 75.   
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Σχήµα 6.89: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Ελαττωµένα πλέγµατα        

6 Χ 6 µε p = 0, 75.   
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Σχήµα 6.90: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Ελαττωµένα πλέγµατα 6 Χ 6 

µε p = 0, 75.   
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Πίνακας 6.91: Αποτελέσµατα του 1

ου
 πειράµατος στα 7 Χ 7 µε p = 0,4375.   
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Σχήµα 6.92: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Ελαττωµένα πλέγµατα        

7Χ 7 µε p = 0,4375.   
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Σχήµα 6.93: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Ελαττωµένα πλέγµατα 7 Χ 7 

µε p = 0,4375.   

 

 
Πίνακας 6.94: Αποτελέσµατα του 1

ου
 πειράµατος στα 7 Χ 7 µε p = 0, 75.   
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Σχήµα 6.95: Ιστόγραµµα ελάχιστου αριθµού ερευνητών. Ελαττωµένα πλέγµατα        

7 Χ 7 µε p = 0, 75.   
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Σχήµα 6.96: Ιστόγραµµα ελάχιστου αριθµού βηµάτων. Ελαττωµένα πλέγµατα 7 Χ 7 

µε p = 0, 75.   

 

Αρχικά παρατηρούµε τις πολύ καλές αποδόσεις της έρευνας κόµβων, δηλαδή 

του GSST, σε όλες τις περιπτώσεις. Παράδειγµα, πρώτη τιµή µε τον GSST-L (2.92) 

στην οικογένεια 5 Χ 5 µε p = 0.4375 υποδηλώνει ότι υπήρχαν σίγουρα γράφοι που 

καθαρίστηκαν µε 2 µόνο ερευνητές, στο παιχνίδι ακµών. Επίσης βλέπουµε ότι, για τις 

τιµές των πιθανοτήτων που επιλέξαµε, οι uniform παραλλαγές εξακολουθούν να 

λειτουργούν καλύτερα από τις DFS. Τα καλύτερα ποσοστά ελάχιστων ερευνητών στις 

DFS παραλλαγές δεν πρέπει να µας παραπλανήσουν καθώς αναφέρονται σε 

µεγαλύτερους (συνήθως κατά 1) αριθµούς ερευνητών. Έτσι φαίνεται ότι τα 

ελαττωµένα πλέγµατα (τουλάχιστον αυτά µε p 0.4375≥ ) υιοθετούν αυτή την 

ιδιότητα από τα πλήρη, άρα είναι πιο κοντά σε αυτά από ότι στα δένδρα. Τέλος, όπως 

λογικά περιµέναµε, τα βήµατα, οι χρόνοι και οι αριθµοί των ερευνητών, αυξάνονται 

καθώς αυξάνονται οι διαστάσεις και οι πιθανότητες, δηλαδή η πυκνότητα των ακµών. 

Αντίθετα, τα ποσοστά καλύτερων αποτελεσµάτων µειώνονται. 
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Η µικρότερη πυκνότητα των ελαττωµένων πλεγµάτων σε σχέση µε τα πλήρη 

µπορεί να εξηγήσει και τις µικρότερες διαφορές στον αριθµό βηµάτων που 

απαιτούνται ανάµεσα στην έρευνα κόµβων και ακµών. Επιπλέον, µικρότερες είναι 

και οι διαφορές του ελάχιστου αριθµού βηµάτων σε σχέση µε τον µέσο αριθµό 

βηµάτων, απ’ ότι στα πλήρη πλέγµατα (ως µέσες τιµές στους 50 γράφους πάντα). 

Γενικά, οι χρόνοι εκτέλεσης του Eclear, είτε για καθαρισµό των κινήσεων 

διακτινισµού, είτε για την εφαρµογή του Extra Searcher είναι αρκετά µικροί. Παρόλα 

αυτά όµως βλέπουµε τον δεκαπλασιασµό τους από τις 5 X 5 οικογένειες στις 7 X 7. 

Σε µεµονωµένες δοκιµές που έγιναν άτυπα σε 8 Χ 8 ελαττωµένα πλέγµατα, οι  χρόνοι 

αυτοί γίνονται υπερδεκαπλάσιοι από αυτούς  των 7 Χ 7, γεγονός που καθιστά τα ίδια 

πειράµατα σε µεγαλύτερες διαστάσεις χρονικά ασύµφορα (στα πλαίσια αυτής της 

εργασίας). Απ’ ότι φαίνεται, η πυκνότητα των ακµών δεν επηρεάζει τους χρόνους 

εκτέλεσης του Extra Searcher τόσο όσο η αύξηση των διαστάσεων, δηλαδή ο χρόνος 

εκτέλεσης του ES εξαρτάται περισσότερο από τον αριθµό κόµβων από ότι των 

ακµών. 

Τέλος, ποιοτικά, φαίνεται ότι γενικά ο Extra Searcher, προσθέτει πάντα έναν και 

µοναδικό ερευνητή. Στις περισσότερες περιπτώσεις βλέπουµε ότι για τους ελάχιστους 

αριθµούς ερευνητών που εντοπίσαµε, ισχύει η σχέση imc imc

E Ns s 1= +  (ακόµα και κατά 

µέσο όρο, για 50 γράφους) . Η σχέση αυτή είναι αναµενόµενη (και θεωρητικά από το 

Θεώρηµα 3.11). Οι  περιπτώσεις που δεν ισχύει εξηγούνται από το τέχνασµα που 

χρησιµοποιήσαµε (επιλογή 100 τυχαίων στρατηγικών). Από ότι φαίνεται το τέχνασµα 

εφαρµόστηκε κυρίως στην οικογένεια 5 X 5 µε p = 0.4375, καθώς σε αυτήν 

παρήχθησαν συχνά περισσότερες από 100 ελάχιστες στρατηγικές, αλλά δεν 

προκλήθηκαν µεγάλες διαφοροποιήσεις από τις αναµενόµενες τιµές. 

 

6.3 Συµπεράσµατα πειραµάτων 

 

Από το σύνολο των πειραµάτων µπορούµε να καταλήξουµε σε ορισµένα γενικά 

συµπεράσµατα, που  περιγράφουν συνοπτικά τη συµπεριφορά των δύο αλγορίθµων 

έρευνας ακµών. 

Στους σχετικά µικρούς γράφους οι δύο αλγόριθµοι έχουν τις ίδιες, περίπου, 

καλές αποδόσεις, από άποψη χρόνου εκτέλεσης, αριθµού ερευνητών και βηµάτων 

έρευνας. Ωστόσο για λίγες περιπτώσεις δεν ισχύει ο κανόνας imc imc

E Ns s 1= + , λόγω 

ιδιότυπης τοπολογίας του γράφου, και έχουµε imc imc

E Ns s= . Τότε ο Extra Searcher θα 

εισάγει έναν ακόµα ερευνητή, που θα είναι όµως περιττός, εκτός αν ο GSST έχει ήδη 

καθαρίσει το γράφο και για το παιχνίδι ακµών (πιθανότερο µε την παραλλαγή    

GSST-R).  

Καθώς αυξάνεται το µέγεθος των  γράφων παρατηρούµε ότι ο Extra Nodes 

αρχίζει να υστερεί στον αριθµό των βηµάτων, διότι αυξάνονται οι ανούσιες κινήσεις 

που παράγει ο GSST. Το γεγονός αυτό έχει είναι συνέπεια της µεγάλης αύξησης του 

αριθµού των κόµβων και ακµών στον ψευδογράφο µε τους ενδιάµεσους κόµβους.  Αν 

ο αρχικός γράφος έχει  n κόµβους και e ακµές, τότε ο ψευδογράφος που δίδεται στον 

GSST για έρευνα θα έχει n+e κόµβους και 2e ακµές. Επίσης, όσο µεγαλύτεροι είναι 

οι εξεταζόµενοι γράφοι, τόσο µειώνεται η πιθανότητα να αποτελούν εξαίρεση στον 

κανόνα imc imc

E Ns s 1= + , άρα να είναι περιττός ο καθαριστής ακµών. 

Στους πολύ µεγάλους γράφους ο Extra Nodes γίνεται πλέον χρονικά ασύµφορος 

καθώς επίσης µειώνονται οι αποδόσεις και από άποψη αριθµού ερευνητών και 
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βηµάτων έρευνας. Ο Extra Searcher, αντιθέτως, εξακολουθεί να έχει την ίδια 

συµπεριφορά, δηλαδή να χρησιµοποιεί πάντα έναν µόνο περισσότερο ερευνητή από 

την απλή έρευνα κόµβων. Επιπροσθέτως, οι χρόνοι εκτέλεσης είναι αρκετά 

ικανοποιητικοί (ακόµα και στο πλήρες πλέγµα 10 Χ 10). 

Τέλος, παρατηρήσαµε ότι ο Extra Nodes δουλεύει γενικά καλύτερα µε τις DFS 

παραλλαγές του GSST, ακόµα και στα πλέγµατα. Αυτό µπορεί να εξηγηθεί από το 

γεγονός ότι ο ψευδογράφος ακόµα και ενός πλήρους πλέγµατος είναι πολύ πιο 

αραιός, από άποψη πυκνότητας ακµών, από τον αρχικό. Ο Extra Searcher δείχνει να 

υιοθετεί πάντα την συµπεριφορά του GSST. ∆ηλαδή λειτουργεί γενικά καλύτερα µε 

την DFS κατασκευή γεννητορικών δένδρων, αλλά στα πλέγµατα µε την uniform. Από 

τα πειράµατα στα ελαττωµένα πλέγµατα φάνηκε επίσης ότι οι χρόνοι εκτέλεσης του 

Extra Searcher στους µεγάλους γράφους εξαρτώνται κυρίως από τον αριθµό των 

κόµβων του γράφου και όχι από την πυκνότητα των ακµών του. 

Συµπερασµατικά, καταλήγουµε ότι και οι δύο αλγόριθµοι είναι κατάλληλοι για 

την επίλυση µικρών γράφων, µε την εξαίρεση πάντα της περίπτωσης imc imc

E Ns s= . Για 

τους υπόλοιπους όµως, ο Extra Searcher υπερτερεί ξεκάθαρα για κάθε µέτρο 

σύγκρισης. 

Συγκρίνοντας τώρα την έρευνα ακµών µε την έρευνα κόµβων θα 

χρησιµοποιήσουµε, για τους λόγους που αναφέρθηκαν παραπάνω, τις αποδόσεις του 

Extra Searcher µόνο. Αν και ο εν λόγω αλγόριθµος δεν είναι ο βέλτιστος που µπορεί 

να κατασκευαστεί, δίνει πολύ καλές λύσεις σε σχέση µε το χρόνο εκτέλεσής του. Τα 

αποτελέσµατα των πειραµάτων επιβεβαιώνουν την θεωρία στο ότι η έρευνα ακµών 

είναι γενικότερη της έρευνας κόµβων (Θεώρηµα 2.6). Έτσι δικαιολογείται και ο 

µεγαλύτερος αριθµός ερευνητών, αλλά και ο µεγαλύτερος αριθµός βηµάτων στην 

έρευνα ακµών. Ανάλογα µε την πολυπλοκότητα του γράφου και τον αριθµό των 

γεννητορικών δένδρων που χρησιµοποιεί ο GSST, η αύξηση των βηµάτων στην 

έρευνα ακµών κυµαίνεται από 10% εώς και 50% των βηµάτων της έρευνας κόµβων.  
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7.Επίλογος 

7.1 Απολογισµός  

 

Οι αρχικοί στόχοι της εργασίας αυτής µπορούµε να πούµε ότι καλύφθηκαν 

κατά ένα µεγάλο µέρος. Πιο συγκεκριµένα: 

 

1. Το εργαλείο γραµµής εντολών Eclear.exe (Κεφ. 5.1.2) υλοποιεί τους δυο 

αλγορίθµους µε ταχύτητα και χρηστικότητα. Η δοµή των αρχείων εισόδου 

και εξόδου του ακολουθεί αυτή του gsearch.exe (Κεφ. 5.1.1). Έτσι τα δυο 

προγράµµατα µπορούν να συνεργαστούν, άρα και να συνδυαστούν οι 

αντίστοιχοι αλγόριθµοι .  

2. Το γραφικό περιβάλλον GsearchGUI περιλαµβάνει όλες τις επιθυµητές 

λειτουργίες. Η χρήση του είναι απλή και άµεση και η οπτικοποίηση των 

δύο διαφορετικών τύπων έρευνας (κόµβων και ακµών) είναι ξεκάθαρη και 

κατατοπιστική. 

3. Η µαθηµατική τεκµηρίωση έγινε τελικά µόνο για τον Extra Searcher λόγω 

χρονικού περιορισµού. Η επιλογή έγινε µε βάση την πιο περίπλοκη βασική 

του ιδέα και τις γενικά καλύτερες αποδόσεις του. 

4. Η πειραµατική µελέτη έγινε σε µεγάλο πλήθος γράφων και συνεπώς τα 

συµπεράσµατά της (Κεφ. 6.3) µπορούν να θεωρηθούν αξιόπιστα. 

 

 

7.2 Προτεινόµενη µελλοντική έρευνα 

 

1. Απόδειξη της πληρότητας του extra nodes: Όπως αναφέρθηκε και στο κεφάλαιο 

4.1 ο Extra Nodes, όσες φορές εφαρµόστηκε λειτούργησε ορθά. Η πληρότητά του 

µάλιστα φαίνεται κατά κάποιο τρόπο αναµενόµενη, όπως επίσης και η µονοτονία 

των στρατηγικών που παράγει. Ωστόσο δεν υπάρχει κάποια µαθηµατική απόδειξη 

για τα παραπάνω. Μια δυσκολία για την απόδειξη αυτών των ιδιοτήτων είναι ότι, 

στην µετατροπή της έρευνας µε τους ενδιάµεσους κόµβους σε έρευνα για τον 

αρχικό γράφο, µπορεί να αλλάξει σειρά καθαρισµού των αρχικών κόµβων. 

 

2. Πιο αποδοτικοί αλγόριθµοι έρευνας ακµών: Οι αλγόριθµοι που εξετάσαµε, είτε 

µεταθέτοντας το πρόβληµα (Extra Nodes) είτε δρώντας συµπληρωµατικά (Extra 

Searcher), χρησιµοποιούν και οι δύο την έρευνα κόµβων (GSST). Παρόλ’ αυτά, 

ιδίως ο Extra Searcher , έχουν καλές αποδόσεις στους γράφος που εξετάσαµε. Θα 

θέλαµε όµως να βρεθούν αποδοτικότεροι, ίσως πιο εξειδικευµένοι, αλγόριθµοι για 

το παιχνίδι ακµών. 

 

3. Καλύτερη επιλογή γεννητορικών δέντρων: Ο αλγόριθµος GSST εξετάζει το 

σύνολο των πιθανών γεννητορικών δένδρων µε τυχαίο τρόπο. Θα µπορούσε όµως 

µε κάποιο τρόπο να εξετάζει µόνο τα πιο «καλά» δένδρα; ∆ηλαδή, θα ήταν πολύ 

χρήσιµο για τον GSST να υπάρχουν κάποια κριτήρια για το ποια γεννητορικά 

δένδρα θα δώσουν µε µεγαλύτερη πιθανότητα ελάχιστες στρατηγικές. Ίσως µια 

αρχική προσέγγιση θα ήταν η µελέτη και εξήγηση της καλύτερης συµπεριφοράς 
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των uniform δένδρων στα πλέγµατα και των DFS δένδρων στους άλλους 

γράφους. 

 

4. Αλγόριθµοι καθαρισµού σε ελάχιστο χρόνο και ελάχιστης συνολική απόσταση: 

Εκτός από τον αριθµό ερευνητών, υπάρχουν και άλλα κριτήρια για την ποιότητα 

µιας στρατηγικής έρευνας όπως ο αριθµός των βηµάτων. Με δεδοµένο αριθµό 

ερευνητών, µεγαλύτερο από τον ελάχιστό, πως θα µπορούσαµε να 

κατασκευάσουµε την στρατηγική µε τα λιγότερα βήµατα; Υπάρχει κάποιος 

αποδοτικός αλγόριθµος που να συνδυάζει τα δύο κριτήρια µε οριζόµενα βάρη 

ακµών; ∆ηλαδή, σε ένα γράφο που η διάσχιση κάθε ακµής έχει ένα συγκεκριµένο 

κόστος (που αντιπροσωπεύει π.χ. την απόσταση στον πραγµατικό χώρο), πως 

µπορεί να ελαχιστοποιηθεί το συνολικό κόστος για την στρατηγική καθαρισµού;. 

 

5. Αλγόριθµοι καθαρισµού µε λιγότερους περιορισµούς: Για παράδειγµα για 

εσωτερική µονότονη (αλλά όχι συνδεµένή) έρευνα, ή για εσωτερική συνδεδεµένη 

(αλλά όχι µονότονη έρευνα) ή ακόµα και για έρευνα χωρίς κανένα περιορισµό. 

 

6. Στοχαστική έρευνα: Ο φυγάδας δεν κινείται µε άπειρη ταχύτητα και οι κινήσεις 

του δεν είναι πλέον οι καλύτερες για την διαφυγή του. Κινείται τώρα τυχαία ( ή 

ακολουθεί κάποιο µοντέλο κινήσεων). Έτσι, δεν ακολουθείται πλέον η 

συντηρητική  προσέγγιση της παρούσας εργασίας και το παιχνίδι δεν εκφυλίζεται 

µονοµερές. Αρκετή έρευνα έχει γύρω από αυτό το θέµα όπως στις [19,20], 

ωστόσο δεν υπάρχει κάποια πειραµατική µελέτη των αντίστοιχων αλγορίθµων. 

 

7. Τα παιχνίδια κόµβων και ακµών από την πλευρά του φυγάδα: Για µια στρατηγική 

που δεν είναι µονότονη και µε µερική γνώση της θέσης των ερευνητών (π.χ. 

«όσφρηση» από απόσταση µικρότερη των δύο ακµών), πώς ποια είναι η καλύτερη 

διαδοχή κινήσεων για τον φυγάδα; Αν γνωρίζει περίπου τον τρόπο που κινούνται 

οι ερευνητές µπορεί (και πώς) να τους αποφύγει; 
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